М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
апрркн1
апрркн1
21.06.2022 14:13 •  Алгебра

Найдите наибольшее значение выражения 12x-5x^2 найдите наименьшее значение выражения 2x^2-7x

👇
Ответ:
пппп104
пппп104
21.06.2022
Чтобы найти наибольшее и наименьшие значения, необходимо взять производную, нвйти точки экстремума и подставить их в исходное выражение
производная первого выражения 12-10x. приравниваем к 0, x=1.2. подставляем в исх.выраж. 12×1.2 -5×1.44=14.4-7.2=7.2
для 2го выражения производная 4x-7=0, x=7/4. 2×7/4×7/4 -7×7/4=49/8-49/4= -49/8
4,4(91 оценок)
Ответ:
saponovadasha
saponovadasha
21.06.2022
12х-5х*х=(2*1,2ч-х*х)*5=(-1,44+2*1,2х-х*х)*5+7,2=7,2-5*(х-1,2)^2
Очевидно, наибольшее значение 7,2 (достигается при х=1,2)
Точно также  2*(х*х-3,5х)=2*(х*х-2*7/4х+49/16)-49/8=(х-7/4)^2-49/8
Наименьшее значение -49/8=-6,125
4,8(43 оценок)
Открыть все ответы
Ответ:
Vladimirhdjdn
Vladimirhdjdn
21.06.2022

1) Найдем нулю нашей функции. Для чего разложим на множители формулу, которой она задана, с введения новых вс членов.

    f(x)=\frac{1}{3}(x^{3}-4x^{2}-4x^{2}+4x+x+16-2)==\frac{1}{3}((x^{3}-4x^{2}+4x)-(4x^{2}-16)+(x-2))==\frac{1}{3}[x(x-2)^{2}-4(x-2)(x+2)+(x-2)]==\frac{1}{3}(x-2)(x(x-2)-4(x+2)+1)=\frac{1}{3}(x-2)(x^{2}-6x-7) 

 Из f(x)=0 следует:

    а)  x-2=0, отсюда x_{1}=2 - нуль функции

    б) x^{2}-6x-7=0, D=(-6)^{2}-4*(-7)=36+28=64, отсюда

   x_{2}=\frac{6+8}{2}=7, x_{3}=\frac{6-8}{2}=-1 - нули функции

 

Итак, функция f(x) обращается в нуль в точках x_{1}, x_{2} и x_{3} 

 

2) Найдем возможные точки экстремума нашей функции. Для чего найдем производную функции f(x):

 f^{'}(x)=\frac{1}{3}(x^{3}-8x^{2}+5x+14)^{'}_{x}=\frac{1}{3}(3x^{2}-16x+5)-----(1) 

  Разложим квадратный трехчлен, стоящий в правой части (1), на целые множители. Для чего найдем дискриминант этого квадратного трехчлена:     

   D=256-12*5=256-60=196=14^{2}, отсюда найдем корни:

     x^{'}_{1}=\frac{16+14}{6}=5

    x^{'}_{2}=\frac{16-14}{6}=\frac{1}{3}  ---------(2)

Тогда с (2) выражение (1) примет вид метода интервалов найдем промежутки, на которых производная функции f(x) принимает положительные и отрицательные значения:

   

а) f^{'}(x)0  при x принадлежащем объединению промежутков

  (-бесконечности; 1/3)U(5; +бесконечности ) 

б) f^{'}(x)<0  при x принадлежащем промежутку (1/3; 5)

 

Известно, что промежутки, на которых производная функции положительна, являются промежутками возрастания функции!

На промежутках, где f^{'}(x)<0, функция убывает!       

  

Поскольку при переходе через точку x=1/3 производная меняет знак с плюса на минус, то эта точка - точка максимума

 Поскольку при переходе через точку x=5 производная меняет знак с минуса на плюс, то эта точка - точка минимума. Итак,

      x_{max}=\frac{1}{3} 

       x_{min}=5 

      

           

 

4,6(79 оценок)
Ответ:
Olga75aella
Olga75aella
21.06.2022

1) Найдем нулю нашей функции. Для чего разложим на множители формулу, которой она задана, с введения новых вс членов.

    f(x)=\frac{1}{3}(x^{3}-4x^{2}-4x^{2}+4x+x+16-2)==\frac{1}{3}((x^{3}-4x^{2}+4x)-(4x^{2}-16)+(x-2))==\frac{1}{3}[x(x-2)^{2}-4(x-2)(x+2)+(x-2)]==\frac{1}{3}(x-2)(x(x-2)-4(x+2)+1)=\frac{1}{3}(x-2)(x^{2}-6x-7) 

 Из f(x)=0 следует:

    а)  x-2=0, отсюда x_{1}=2 - нуль функции

    б) x^{2}-6x-7=0, D=(-6)^{2}-4*(-7)=36+28=64, отсюда

   x_{2}=\frac{6+8}{2}=7, x_{3}=\frac{6-8}{2}=-1 - нули функции

 

Итак, функция f(x) обращается в нуль в точках x_{1}, x_{2} и x_{3} 

 

2) Найдем возможные точки экстремума нашей функции. Для чего найдем производную функции f(x):

 f^{'}(x)=\frac{1}{3}(x^{3}-8x^{2}+5x+14)^{'}_{x}=\frac{1}{3}(3x^{2}-16x+5)-----(1) 

  Разложим квадратный трехчлен, стоящий в правой части (1), на целые множители. Для чего найдем дискриминант этого квадратного трехчлена:     

   D=256-12*5=256-60=196=14^{2}, отсюда найдем корни:

     x^{'}_{1}=\frac{16+14}{6}=5

    x^{'}_{2}=\frac{16-14}{6}=\frac{1}{3}  ---------(2)

Тогда с (2) выражение (1) примет вид метода интервалов найдем промежутки, на которых производная функции f(x) принимает положительные и отрицательные значения:

   

а) f^{'}(x)0  при x принадлежащем объединению промежутков

  (-бесконечности; 1/3)U(5; +бесконечности ) 

б) f^{'}(x)<0  при x принадлежащем промежутку (1/3; 5)

 

Известно, что промежутки, на которых производная функции положительна, являются промежутками возрастания функции!

На промежутках, где f^{'}(x)<0, функция убывает!       

  

Поскольку при переходе через точку x=1/3 производная меняет знак с плюса на минус, то эта точка - точка максимума

 Поскольку при переходе через точку x=5 производная меняет знак с минуса на плюс, то эта точка - точка минимума. Итак,

      x_{max}=\frac{1}{3} 

       x_{min}=5 

      

           

 

4,7(85 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ