S=ab - площадь прямоугольника а - длина b - ширина Тогда a=b+3 b(b+3)=130 b²+3b=130 b²+3b-130=0 D=3²+4*130=529=23² b₁=(-3+23)/2=10 cм ширина прямоугольника b₂=(-3-23)/2=-13<0 не подходит
Возьмем производную, получим: f'(x) = x^3-4x x^3-4x=0 x(x^2-4)=0 x=0 x^2-4=0 x^2=4 x = 2, x = -2
Рассмотрим, как ведет себя производная в окрестности этих точек При x<-2 f'(x) < 0 => f(x) убывает При -2<x<0 f'(x) > 0 => f(x) возрастает При 0<x<2 f'(x) < 0 => f(x) убывает При x>2 f'(x) > 0 => f(x) возрастает
Теперь рассмотрим промежуток [-1;3] x = 0 - точка локального максимума , при x>2 f(x) возрастает, т.е. f(x) принимает свое наибольшее значение или в точке x = 0 или в точке x = 3 При x>2 f'(x) > 0 => f(x) возрастает, x = 2 - точка локального минимума на промежутке [-1;3] => своего наименьшего значения f(x) достигает именно в этой точке
Найдем значения: f(0) = 1 f(3) = 0,25 * 81 - 18 + 1 = 20,25 - 17 = 3,25 f(3) > f(0) => f(3) = 3,25 - наибольшее значение функции на промежутке [-1;3] f(2) = 0,25 * 16 - 8 + 1 = 4 - 8 + 1 = -3 - наименьшее значение функции на промежутке [-1;3]
1. Умножим все части двойного неравенства 1,7<√3<1,8 на √4=2: 1,7*2<√3*√4<1,8*2 3,4<√12<3,6 2. Перемножим данные двойные неравенства : 1,7*2,6<√3*√7<1,8*2,7 4,42<√21<4,86 Умножим последнее неравенство на (-1). Т. к. умножаем на отрицательное число, то знаки неравенства меняются на противоположные: -4,42>-√21>-4,86 или в более привычной форме -4,86<-√21<-4,42 3. Сложим неравенства 3,4<√12<3,6 неравенство -4,86<-√21<4,42: 3,4-4,86<√12-√21<3,6-4,42 -1,26<√12-√21<-1,02.
а - длина
b - ширина
Тогда a=b+3
b(b+3)=130
b²+3b=130
b²+3b-130=0
D=3²+4*130=529=23²
b₁=(-3+23)/2=10 cм ширина прямоугольника
b₂=(-3-23)/2=-13<0 не подходит
a=10+3=13 см длина прямоугольника
ответ 10 см ширина прямоугольника