ответ:Областью значений некоторой функции f(x) называется множество, содержащее все значения которые могут получиться при подстановке в эту функцию всех допустимых значений аргумента x. Область значений функции обозначается E(f).
Проиллюстрируем вышесказанное на конкретном примере. Рассмотрим функцию f(x) = e−x2, график которой изображён на рисунке.
График функции e^(-x^2)
Из графика нетрудно заметить, что какие бы значения аргумента x мы не подставляли бы в функцию f(x), возвращаемое значение всегда будет находиться в диапазоне от 0 до 1. Таким образом, область значений рассматриваемой функции от 0 до 1.
Данный факт можно записать следующим образом:
E(f) ∈ (0; 1]
Наш онлайн калькулятор построен на основе системы Wolfram Alpha. Калькулятор позволяет найти область определения практически любой
Объяснение:
Рассмотрим прямоугольник mknz.
mo = on, ko = oz т.к. диагонали прямоугольника в точке пересечения делятся пополам
ma = ao, oc = cn по условию.
ao = mo : 2, oc = on : 2 по условию.
mo = on из этого следует, что ao = oc
kb = bo, od = dz по условию.
bo = ko : 2, oc = oz : 2 по условию.
ko = oz из этого следует, что bo = od
рассмотрим четырёхугольник abcd
диагональ bd в точке о делит диагональ ac на 2 равных отрезка
диагональ ac в точке о делит диагональ bd на 2 равных отрезка
ответ: четырёхугольник abcd является прямоугольником т.к. его диагонали делятся пополам в очке пересечения.
a1+49d=-a1-19d
2a1+68d=0 => a1÷d=-68÷2=-34
an=a1+(n-1)d=0 => a1÷d=1-n
-34=1-n
n=1+34=35