Заметим ,что наименьшие значения функций:
2^(x-3) +4>4
5*|tg(x)|+3*|ctg(x)|>=2√15 (из соображений полного квадрата и положительности каждого из членов |tg(x)|*|ctg(x)|=1)
Рассмотрим случай когда : a<-2√15
В этом случае числитель будет отрицателен при любом x:
a-(2^(x-3) +4)<0
Знаменатель же ,будет положителен не всегда, тк при каком нибудь x обязательно найдется значение 5*|tg(x)|+3*|ctg(x)|>a ,тк оно имеет область значений от 2√15 до бесконечности) . То есть в зависимости от x, может быть как и положителен так и отрицателен. Вывод: при a<-2√15 будут существовать решения неравенства.
Рассмотрим случай когда: a>4
Тут ситуация иная:
Знаменатель тут всегда положителен,а вот числитель не всегда отрицателен,то есть решения так же будут существовать .
Наконец рассмотрим случай когда:
-2√15<=a<=4
В этом случае числитель всегда отрицателен (при любом x), а знаменатель же наоборот будет неотрицателен. Таким образом только на этом интервале неравенство не будет иметь решения не для какого x. Тк отношение числителя и знаменателя всегда будет отрицательным. P.S Не у кого тут нет вопросов почему строгое неравенство для -2√15(знаменателю быть равным нулю не запрещается,тк наша цель отсутствие решений). Почему же строгое и для 4, а дело все в том ,что: 2^(x-3) +4≠4 , а только стремится к нему при стремлении x к бесконечности,поэтому опасаться за равенство нулю числителя не стоит.
Таким образом
ответ: a∈[-2√15;4]
Заметим ,что наименьшие значения функций:
2^(x-3) +4>4
5*|tg(x)|+3*|ctg(x)|>=2√15 (из соображений полного квадрата и положительности каждого из членов |tg(x)|*|ctg(x)|=1)
Рассмотрим случай когда : a<-2√15
В этом случае числитель будет отрицателен при любом x:
a-(2^(x-3) +4)<0
Знаменатель же ,будет положителен не всегда, тк при каком нибудь x обязательно найдется значение 5*|tg(x)|+3*|ctg(x)|>a ,тк оно имеет область значений от 2√15 до бесконечности) . То есть в зависимости от x, может быть как и положителен так и отрицателен. Вывод: при a<-2√15 будут существовать решения неравенства.
Рассмотрим случай когда: a>4
Тут ситуация иная:
Знаменатель тут всегда положителен,а вот числитель не всегда отрицателен,то есть решения так же будут существовать .
Наконец рассмотрим случай когда:
-2√15<=a<=4
В этом случае числитель всегда отрицателен (при любом x), а знаменатель же наоборот будет неотрицателен. Таким образом только на этом интервале неравенство не будет иметь решения не для какого x. Тк отношение числителя и знаменателя всегда будет отрицательным. P.S Не у кого тут нет вопросов почему строгое неравенство для -2√15(знаменателю быть равным нулю не запрещается,тк наша цель отсутствие решений). Почему же строгое и для 4, а дело все в том ,что: 2^(x-3) +4≠4 , а только стремится к нему при стремлении x к бесконечности,поэтому опасаться за равенство нулю числителя не стоит.
Таким образом
ответ: a∈[-2√15;4]
D=81-80=1
x1=9-1/2=4
x2=9+1/4=5
ответ:4;5
2. x(во второй степени)+x+56=0
D=1+56*4=225=15(во второй степени)
x1=-1-15/2=-8
x2=-1+15=7
ответ:7;-8.
3. x( во второй степени) +11x-12=0
D=121+48=169=13(во второй степени)
x1=-11-13/2=-12
x2=-11+13/2=1
ответ=-12;1.
4. x(во второй степени) -19x+18=0
D=361-72=298=17 ( во второй степени)
x1=19-17/2=1
x2=19+17/2=18
ответ:1;18.
5. 2x(во второй степени)-9x-10=0
D=81+80=161
x1=9-√161/4
x2=9+∨161/4
ответ: 9+∨161/4;9-∨161/4.
Вот