Пусть Хруб.-стоимость одной тетради, Уруб.-стоимость одного альбома Зная, что за 7 тетрадей и 4 альбома заплатили 335 руб. составим первое уравнение системы: 7х+4у=335 Т.к. один альбом дороже одной тетради на 15 руб. составим второе уравнение системы:у-х=15 Решим систему: 7х+4у=335, у- х =15
умножим второе уравнение системы на 7 получим: 7х+4у=335, 7у-7х=105 Сложим первое уравнение со вторым , получим: 11у=440, решаем: у=440:11, у=40- стоимость одного альбома. Подставим во второе уравнение первоначальной системы значение у=40, получим: 40-х=15, х=40-15, х=25- стоимость одной тетради. ответ: 25 руб, 40руб.
Пусть Хруб.-стоимость одной тетради, Уруб.-стоимость одного альбома Зная, что за 7 тетрадей и 4 альбома заплатили 335 руб. составим первое уравнение системы: 7х+4у=335 Т.к. один альбом дороже одной тетради на 15 руб. составим второе уравнение системы:у-х=15 Решим систему: 7х+4у=335, у- х =15
умножим второе уравнение системы на 7 получим: 7х+4у=335, 7у-7х=105 Сложим первое уравнение со вторым , получим: 11у=440, решаем: у=440:11, у=40- стоимость одного альбома. Подставим во второе уравнение первоначальной системы значение у=40, получим: 40-х=15, х=40-15, х=25- стоимость одной тетради. ответ: 25 руб, 40руб.
(5y + 2x)(2x - 5y) = (2x + 5y)(2x - 5y) =
= (2x)^2 - (5y)^2 = 4x^2 - 25y^2