Найдите два последовательных натуральныхчисла сумма квадратов которых равна 761 представьте число 396 в виде произведения двух натуральных чисел одно из которых на 4 меньше другого можно с решением тема решение с квадратного уравнения
Т.к. речь идет про последовательные числа, то они должны быть целыми. Пусть эти числа х, х+1, х+2, х+3, х+4, х+5, и пусть пропущено число х+k, где k∈{0,1,2,3,4,5}. Тогда сумма оставшихся пяти чисел равна х+(x+1)+(x+2)+(x+3)+(x+4)+(x+5)-(x+k)=682. Отсюда 5х+15-k=682, т.е. x=(667+k)/5. Число х будет целым в единственном случае, когда k=3. Значит x=670/5=134. Итак, эти шесть чисел: 134, 135, 136, 137, 138, 139, пропущено число при k=3, т.е. 137. Сумма оставшихся пяти: 134+135+136+138+139=682. ответ: шестое число равно 139.
Понятно, что цифра сотен в каждом слагаемом равна 0. Т.к. нет переносов, то сумма всех цифр во всех слагаемых должна равняться 2+0+3+8=13. Чтобы количество слагаемых было максимальным, сумма цифр в каждом слагаемом должна быть минимальной. Возможны только три слагаемых с суммой цифр 1: 1000, 0010, 0001 (будем писать старшие нули, чтобы легче было на это смотреть). Также, всего имеется 6 возможных различных слагаемых с суммой цифр 2: 2000, 0020, 0002, 1010, 1001, 0011. Значит, что бы получить сумму всех цифр 13 и иметь максимальное число слагаемых, нужно взять 3 слагаемых с суммой цифр равной 1 в каждом слагаемом, и 5 слагаемых с суммой цифр равной 2. Таким образом, ясно, что количество слагаемых не превосходит 3+5=8.
Покажем, что 8 слагаемых нельзя сделать. Предположим, что можно. Тогда, как уже было сказано, обязательно должны быть слагаемые 1000 0010 0001 Т.к. итоговая цифра тысяч равна 2, то еще должно быть только одно слагаемое с цифрой тысяч равной 1, т.е. должно быть одно слагаемое вида 1010 или 1001 (у них сумма цифр уже 2). Все остальные слагаемые должны иметь 0 в разряде тысяч (а также сотен) и сумму цифр 2, поэтому для них остается только 3 варианта: 0020, 0002, 0011. Но это всего дает 3+1+3=7 слагаемых.Т.е. обязано быть слагаемое с суммой цифр больше 2. Но тогда слагаемых не 8 штук, а меньше.
Представить 2038 в виде 7 слагаемых без переносов можно: 1000 0010 0001 1001 0020 0002 0004
1) Пусть первый (больший) катет - х, а второй - у, тогда получаем си-му уравнений:
ху = 120
х - у = 14
х = 14 + у
у(14 + у) = 120
14у + у^2 - 120 = 0
у1 = - 20, у2 = 6 первое, разумеется, не подходит. Выходит второй катет = 6 см, а первый = 20, а гипатинуза = корень из 436.
2) Пусть задуманное число - х, тогда
х^2 - 666 = 19x
х^2 - 19x - 666 = 0
x1 = - 18, х2 = 37. Число натурально значит это 37