Y = 5*x-(1/(x^2)) Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты: Находим коэффициент k: Находим коэффициент b: Получаем уравнение наклонной асимптоты: y = 5 • x
Найдем вертикальные асимптоты. Для этого определим точки разрыва: x1 = 0 Находим переделы в точке 0 ∞ ∞
В последнее выражение все элементы входят как квадраты. Квадрат любого числа не отрицателен. В выражении нет операции вычитания, поэтому все выражение сохраняет положительное значение.
Может ли выражение стать равным 0? Нет, не может из-за области определения. Из последнего выражения видим, что для того, чтобы все выражение стало равным 0, требуется, чтобы либо tg2a стал равен 0, либо cos2a стал равен 0. Но в исходном задании указана функция ctg2a, обратная tg2a. Поэтому все значения a, при котором tg2a или ctg2a обращаются в 0, исключаются. Это автоматически исключает точки, в которых обращаются в 0 функции cos2a и sin2a.
Исходя из этого, значение выражения больше 0 при любом значении a из области определения.
Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:
Находим коэффициент k:
Находим коэффициент b:
Получаем уравнение наклонной асимптоты:
y = 5 • x
Найдем вертикальные асимптоты. Для этого определим точки разрыва:
x1 = 0
Находим переделы в точке 0
x1 = 0 - является вертикальной асимптотой.