Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . 
 А за у дней может закончить Алиса, тогда еѐ производительность равна / у . 
 Т.к. они могут напечатать курсовую работу за 6 дней, 
то /х + /у = 1/  
 Если сначала % = / части курсовой напечатает Катя, 
 а затем завершит работу Алиса, то Алисе остается 
% = / части курсовой. 
 Вся курсовая работа будет выполнена за 12 дней т.е. 
 ( /) х + (/ ) у = .
  Решим систему: 
 /х + /у = / ,
  (/) х + (/ ) у = .
   + = , 
 + = ; 
  у = − , ;
 + * ( − , ) = *( − , )
  у = − , ;
 , ² − + = ; 
 у = − , ;
 ² − + = ; 
 ² − + = ; 
 =  , у = 
 или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. 
 Значит, Катя может напечатать курсовую работу за 10 дней. 
 ответ. за 10 дней
Объяснение: y=f(x)
1) D(f) . Область определения - это множество значений "х", на котором задаётся функция . Если задан график, то, чтобы определить ООФ, надо все точки, лежащие на графике, спроектировать на ось ОХ. Полученное множество и будет ООФ.
Все точки данного графика проектируются на все точки оси ОХ. То есть получаем множество всех действительных чисел.
 
P.S. Множество значений функции E(f) - это значения, которые может принимать переменная "у" . Чтобы найти E(f) по графику, надо проектировать точки графика на ось ОУ. Для изображённой функции E(f)=[ -2; 2 ] .
2) Точка пересечения с осью ОХ - (0,0). Эта же точка (0,0)- точка пересечения с осью ОУ.
3) Функция возрастает на промежутке [ -3; 3 ] , х∈[ -3;3 ]. Если вести карандашом по графику от точки (-3,-2) до точки (3,2), то карандаш движется вверх, функция возрастает.
Промежутков убывания нет (нет участков, на которых карандаш движется вниз) .
P.S. Есть промежутки постоянства функции (где карандаш движется по прямой), это участки х∈(-∞ -3] и х∈[ 3,+∞).
4) Нули функции - это значения "х", при которых "у" обращается в 0 . Для изображённой функции - это х=0 (см. пункт 2). То есть f(0)=0.
5) Наибольшее значение функции - это у=2 , наименьшее значение функции - это у= -2 ( cм. пункт 1 , P.S. )