я тут уже решал подобную задачу столько раз, что не помню, когда был первый.
Точки пересечения биссектрис - это центры окружностей, касающихся левой (или правой) стороны и обеих оснований. Поэтому отрезок, соединяющий эти центры - ЧАСТЬ СРЕДНЕЙ ЛИНИИ :))). Далее, если бы эти центры совпадали, то длина средней линии была бы равна ПОЛУСУММЕ БОКОВЫХ СТОРОН, то есть 14. (в этом случае трапеция была бы "ОПИСАНА ВОКРУГ ОКРУЖНОСТИ", а у таких 4угольников суммы противоположных сторон равны). Поэтому ответ 21-14=7. :)))
(Именно на это расстояние как бы раздвинуты вписаные окружности - пояснение такое :))).
Еще вариант решения, по сути - такой же
Обе точки пересечения биссектрис лежат на одинаковом расстоянии от оснований, это - центры окружностей, касающихся оснований. Одна касается левого ребра 13, другая - правого 15. Если точки касаний делят верхнее основание на отрезки x, у, z, то сразу ясно, что z - искомое расстояние. И есть 3 соотношения.
z+x+y = b;
z+(13-x)+(15-y) = a;
(a + b)/2 = 21
Складываем и делим на 2.
z = 7
Еще вариант решения - проводим спецальную касательную к ЛЕВОЙ ОКРУЖНОСТИ (то есть - с центром в точке F), параллельную СD. Легко видеть, что окружность с центром в F вписана в трапецию с основаниями (13 - z) и (15 - z), где z - ИСКОМОЕ РАССТОЯНИЕ между центрами. Далее - см. начало :)))
1) Построение графика данной функции:
у=х-3
график - прямая, для её построения нужны две точки. Занесём их координаты в таблицу:
х= 0 3
у= -3 0
Чертим систему координат:
отмечаем начало - точку О,
стрелками обозначаем положительное направление вправо и вверх,
подписываем название осей: вправо - х, вверх - у.
Отмечаем единичные отрезки по каждой оси в 1 клетку.
Отмечаем на координатной плоскости точки из таблицы (3; 0) и (0; - 3)
Проводим через них прямую
Подписываем график у=х-3
График готов!
2) Теперь на по оси х отмечаем точку в 4 единицы поднимаемся вертикально вверх до пересечения с графиком функции (прямой) и, отмечаем на графике точку А, после этого, по горизонтали налево возвращаемся на ось у. Отмечаем полученную координату: у=1.
Записываем А(4; 1)
3) Возвращаемся к графику: отмечаем по оси х точку через 6 единиц, поднимаемся вертикально вверх до пересечения с графиком функции (прямой) и отмечаем на графике точку В, после этого, по горизонтали двигаемся в сторону оси у и, дойдя до неё, отмечаем полученную координату: у=3
Записываем В(6; 3)