1) домножим левую и правую части на x. чтобы избавиться от дроби
3x^2 + 3 = 6x
3x^2 - 6x + 3 = 0
D = b^2 - 4ac = (-6)^2 - 4 *3 * 3 = 36 -36 = 0. [1 корень]
x= -b /2a = 6 / 6 =1
ответ: 1
2) приводим дроби к общему знаменателю
к первой дроби доп.множитель Х, ко второй (x^2 +2)
3x - (x^2 +2) -x^2 + 3x - 2
-->
x (x^2 + 2) x (x^2 + 2)
система:
{-x^2 + 3x - 2 = 0
{x (x^2 + 2) 0
-x^2 + 3x - 2 = 0
D = b^2 - 4ac = 9 - 8 = 1 2 корня
x1,2 = -b ± √D / 2a
x1 = -3 + 1 /-2 = -2/-2 = 1
x2 = -3 -1 / -2 = -4/-2 = 2
ответ: 1;2
фото прикреплю, так легче
1200
Объяснение:
Здесь смесь геометрии, комбинаторики и факториалов.
Сначала геометрия.
Треугольники, соответствующие условию, будут находиться или двумя вершинами, то есть одной своей стороной, на одной прямой (где 10 точек) - и третьей вершиной на другой (где 12 точек).
Если мы разберемся, сколько вариантов разместить сторону на прямой, у которой 10 точек - то потом это число умножим на 12 (на число вариантов разместить третью вершину на второй прямой, там, где 12 точек). Получим число треугольников со стороной на 10-точечной прямой и третьей вершиной на 12-точечной.
И наоборот, если разберемся, сколько вариантов разместить сторону на 12-точечной прямой - то полученное число умножим на 10 и получим число треугольников со стороной на 12-точечной прямой и третьей вершиной на 10-точечной.
Потом сложим полученные числа - получим итоговое количество возможных треугольников.
ОК, пошли считать.
Факториалы можно поискать по таблицам, например 10! (факториал 10) равен 3 628 800 и т.п.
Чтобы вычислить, сколько вариантов разместить сторону (т.е. 2 точки) на 10-точечной прямой, считаем число вариантов С по формуле
С из 10 элементов по 2 = 10! * (10-2)! = 45
Сторону (т.е. 2 вершины треугольника) можно разместит на 10-точечной прямой 45-ю Умножаем на 12 - то есть на варианты размещения вершины на 12-точечной прямой = получаем 540.
Сторону (т.е. 2 вершины) можно разместить на 12-точечной прямой:
С из 12 элементов по 2-м = 12! * (12-2)! = 66.
Умножаем на 10, то есть на число вариантов разместить третью вершину на 10-точечной прямой = получаем 660 вариантов треугольника.
Складываем 540 и 660 = получаем 1200.