N2
а) 3x+12>0 3x>-12 x>-4
2x-3<0 2x<3 x<1,5 x∈(-4;1,5)
б) 3x+2>2x-3 x>-5
x-5>0 x>5 x∈(5;+∞)
N3
a)
=0
x1+x2=2 x1=3
x1x2=-3 x2=-1
(x-3)(x+1)>0
+ +
_____._______._____
-1 - 3
x∈(-∞;-1)∪(3;+∞).
б)
=0
d=(4)²-41
5=16-20=-4
нет решений
в)
=0
(x-3)²=0
(x-3)(x-3)>0
+
_____._____
3 - x∈(-∞;3)
Уравнение четвертой степени имеет максимум 4 корня.
Если все они действительные - то согласно правилу знаков Декарта - все они положительные , так как знак коэффициентов меняется 4 раза. ( + - + - + )
Согласно теореме Виетта сумма корней уравнения n - степени равна частному от деления коэффициента при степени n-1 на коэффициент при n - степени с противоположным знаком .
В нашем случае это 26/1 = 26
Определим точки перегиба функции в левой части Уравнения
f"(x) = (x^4-26x^3+160x^2-100x+7)" = 12x^2 - 156x +320
f"(x) =0
12x^2 - 156x +320 =0
x12 = 13/2 +- √561 / 6
x1 ≅ 2.5
x2≅10.4
- Точки перегиба
Все Корни уравнения положительные .
f(0) >0
f(2,5) >0
посмотрим есть ли на интервале от 0 до 2.5 отрицательные значения функции и соответственно 2 корня
f(0,5) = (0.5)^4-26*(0.5)^3+160*(0.5)^2-100*(0.5)+7 = -6.1875
Есть 2 действительных корня .
Посмотрим значение функции за второй точкой перегиба
f(12)= (12)^4-26*(12)^3+160*(12)^2-100*(12)+7 = -2345
При больших X - значение функции положительно ( так коэффициент при 4 степени положительный )
Значит уравнение имеет 4 действительных корня и их сумма по теореме Виетта равна 26