1) 3х - 7 < x + 1,
3x - x < 1 + 7,
2x < 8,
x < 4.
ответ: х ∈ (-∞; 4).
2) 2 + x > 8 - x,
x + x > 8 - 2,
2x > 6,
x > 3.
ответ: х ∈ (3; +∞).
3) 1 - x ≥ 2x - 5,
-x - 2x ≥ -5 - 1,
-3x ≥ -6,
x ≤ 2.
ответ: х ∈ (-∞; 2].
4) 2x + 1 > x + 6,
2x - x > 6 - 1,
x > 5.
ответ: х ∈ (5; +∞).
5) 4x + 2 > 3x + 1,
4x - 3x > 1 - 2,
x > -1.
ответ: х ∈ (-1; +∞).
6) 6x + 1 < 2x + 9,
6x - 2x < 9 - 1,
4x < 8,
x < 2.
ответ: х ∈ (-∞; 2).
1) а₃ + а₉ = (а₁ + 2d) + (a₁ + 8d) = 2a₁ + 10d = 2(a₁ + 5d) = 2a₆ = 12
Отсюда а₆ = 6
2) Угол между ними 60⁰ (пусть АВ - диаметр, АС - хорда, О - центр, тогда тр-к АОС - равносторонний, поэтому угол ОАС = 60⁰)
3) а₄₇=а₁+ 46d = 74
a₇₄= a₁+73d = 47
Вычитаем из первлго - второе:
-27d = 27
Отсюда: d = -1.
4) Весь круг - 360⁰
сектор - 30⁰
Sсектора = Sкруга *30⁰/360⁰ = Sкруга /12
ответ: 1/12 часть
5) 3,6
Видим, что b₁ = 3, q = 2
По формуле суммы n членов геом. прогрессии:
S₆ = b₁(1-q⁶) / (1-q) = 3*(1-64) / (1-2) = 3*63 = 189
ответ: 189