![\int (2x-3)\, dx=[t=2x-3\;,\; dt=d(2x-3)=(2x-3)'\, dx=2\, dx,\\\\dx=\frac{dt}{2}\, ]=\frac{1}{2}\cdot \int t\cdot dt=\frac{1}{2}\cdot \frac{t^2}{2}+C=\frac{1}{4}\cdot (2x-3)^2+C;\; \; \to \\\\\int _{-3}^2(2x-3)\, dx=\frac{1}{4}\cdot (2x-3)^2\, |_{-3}^2=\frac{1}{4}\cdot (1^2-(-9)^2)=\\\\=\frac{1}{4}\cdot (1-9)=-2](/tpl/images/0624/4857/fe06b.png)

Функция 
1) Очень дико видеть "область определения", потому что это то, что задаёт математик. Область существования вещественных прообразов называть "область определения" — дичь! Так вот, область существования аргумента здесь — всё множество действительных чисел ("вся числовая прямая").
2) Пересечение с осью аргументов означает равенство
. То есть требуется решить уравнение
. Это алгебраическое уравнение второго порядка. Два его корня суть 6 и -2.
3) Чётность/нечётность
относительно оси значений (x = 0)? Нет, не обладает свойствами ни чётности, ни нечётности.
4) Тут меня раза три остановили, когда я стал исследовать на экстремумы через производную. Если исследовать всё-таки через производные, то

Точки экстремума:
0[/tex]
Вторая производная:
=> выпуклость вверх для любого значения агрумента (прообраза) => точки экстремума — максимумы.
Функция монотонно возрастает при x < 1 и монотонно убывает при x > 1.
5) Точки экстремумов были найдены выше.
6) Рисунок 1 в аттаче.
7) Они хотят интеграл? Ого. Не, это только завтра.
2x-3=0 или x^2+5x+6=0
2x=3 По Th Виетта:
x=3/2 x1=-3
х=1.5 x2=-2
ответ:1.5
-3
-2