Х т - должна по плану собрать 1-я бригада (400 - х) т - должна по плану собрать 2-я бригада 15% это 0,15 100% + 15% = 115% это 1,15 5% это 0,05 100% - 5% = 95% это 0,95 1,15х т - собрала 1-я 0,95 * (400 - х) т - собрала 2-я Уравнение 1,15х + 0,95 + (400 - х) = 428 1,15х + 380 - 0,95х = 428 0,2х = 48 х = 48 : 0,2 х = 240 т - должна по плану собрать 1-я бригада 400 - 240 = 160 т - должна по плану собрать 2-я бригада
Проверка 1,15 * 240 + 0,95 * 160 = 428 276 + 152 = 428 428 = 428 всё правильно ответ 240 т
Моя логика такова:1) наименьшее число участников будет при наименьшем числе призеров при соблюдении нижнего предела процента призеров =1,7%;2) примем, что наименьшее число призеров =2 (из условий задачи - “призёрами” - множественное число);3) тогда, если 2 человека - 1,7% от общего числа участников, то таких участников должно быть не меньше 118 (из пропорции: 2=1,7; х=100).ответ: наименьшее возможное число школьников, участвовавших в олимпиаде, (1,7% от которого будет минимальным целым числом), составляет 118 человек.
sin2x - (1-sin²x) =0 ;
2sinxcosx -cos²x =0 ;
cosx(2sinx -cosx) =0 ;
[cosx =0 ;2sinx-cosx =0.⇔ [cosx =0 ;sinx=(1/2)cosx.⇔[cosx =0 ;tqx=1/2.
[ x=π/2 +πn ; x =arctq1/2+πn , n∈Z.
2) ;
ctq2x*cos²x - ctq2x*sin²x =0 ;
ctq2x*(cos²x - sin²x) =0 ;
ctq2x*cos2x =0 ;
sin2x =0 * * *cos2x = ± 1 ≠0→ ОДЗ * * *
2x =πn , n∈Z ;
x =(π/2)*n , n∈Z .
3) ;
3sin²x/2 -2sinx/2 =0 ;
3sinx/2 (sinx/2 -2/3) =0 ;
[sinx/2 =0 ; sinx/2 =2/3 .⇒[x/2 =πn ; x/2= arcsin(2/3) +πn ,n∈Z.⇔
[x =2πn ; x= 2arcsin(2/3) +2πn ,n∈Z.
4) ;
* *cos2α =cos²α -sin²α =cos²α -(1-sin²α)=2cos²α -1⇒1+cos2α=2cos²α * *
cos3x = 1+cos2*(3x) ; * * * α = 3x * * *
cos3x = 2cos²3x ;
2cos²3x -cos3x =0 ;
2cos3x(cos3x -1/2) =0 ;
[cos3x =0 ; cos3x =1/2 ⇒[3x=π/2+πn ; 3x= ±π/3+2πn ,n∈Z.⇔
[x=π/6+πn/3 ; x= ±π/9+(2π/3)*n ,n∈Z.