а) х+19=30
х=30-19
х=11
11+19=30 (это проверка)
30=30
б) 27-х=27+х
х+х=27-27
2х=0
х=0:2
х=0
27-х=27+х
27-0=27+0
27=27
в) 30+х=32-х
х+х=32-30
2х=2
х=2:2
х=1
30+х=32-х
30+1=32-1
31=31
г) 10+х+2=15+х-3
(10+2)+х=(15-3)+х
12+х=12+х
х+х=12-12
2х=0
х=0:2
х=0
10+0+2=15+0-3
12=12
10+х+2=15+х-3
х=9
10+9+2=15+9-3
21=21
10+х+2=15+х-3
х=5
10+5+2=15+5-3
21=21
Пусть x (x∈N) - первое из трех последовательных четных чисел, тогда второе и третье равны x+2 и x+4 соответственно.
Запишем сумму
x+x+2+x+4=3x+6=3(x+6)
По признаку делимости, число кратно 6, если оно кратно 2 и 3.
Очевидно, что 3(x+6) кратно трем, т.к. есть множитель 3. С учетом того, что x - четное число, можно заявить, что x+6 делится на 2, а значит все выражение кратно 6.
Доказано.