Большое количество задач такого типа решаются при формулы Ньютона-Лейбница:
Поэтому, во-первых, нужно найти и
- абсциссы точек пересечения графиков функций. Для этого нужно решить несложное уравнение:
А так как есть целых три точки пересечения, то придется считать два интеграла: первый - от до
(как результат приравнивания функций:
), а второй - от
до
(здесь уже
):
Значит, площадь искомой фигуры (состоящей из нескольких других фигур) равна или
(каких-то квадратных единиц измерения), если перевести в десятичную дробь.
Большое количество задач такого типа решаются при формулы Ньютона-Лейбница:
Поэтому, во-первых, нужно найти и
- абсциссы точек пересечения графиков функций. Для этого нужно решить несложное уравнение:
А так как есть целых три точки пересечения, то придется считать два интеграла: первый - от до
(как результат приравнивания функций:
), а второй - от
до
(здесь уже
):
Значит, площадь искомой фигуры (состоящей из нескольких других фигур) равна или
(каких-то квадратных единиц измерения), если перевести в десятичную дробь.
Б) (с-2)^2 = c²-4c+4
В) (0,4+d)^2 = 0,16+0,8d+d²
Г) (k-0,5)^2 = k²-k+0,25
Д) (-х+у)^2 = (y-x)² = y²-2xy+x²
Е) (-m-n)^2 = (m+n)² = m²+2mn+n²