|x-1|>|x+2|-3 |x-1|-|x+2|>-3 Раскроем модули. Приравняем каждое подмодульное выражение к нулю и найдем точки,в которых подмодульные выражения меняют знак: x-1=0 x+2=0 x=1 x=-2 Нанесем эти значения Х на числовую прямую:
(-2)(1)
Мы получили три промежутка.Найдем знаки каждого подмодульного выражения на каждом промежутке:
(-2)(1) x-1 - - + x+2 - + +
Раскроем модули на каждом промежутке: 1)x<-2 На этом промежутке оба подмодульных выражения отрицательны,поэтому раскрываем модули с противоположным знаком: -x+1+x+2>-3 3>-3 - неравенство верное при любых Х на промежутке x<-2
2) -2<=x<1 На этом промежутке первое подмодульное выражение отрицательное(его мы раскроем с противоположным знаком),а второе - положительное, и его мы раскроем с тем же знаком: -x+1-x-2>-3 -2x-1>-3 -2x>1-3 -2x>-2 x<1 С учетом промежутка -2<=x<1 получаем x e [-2;1)
3)x>=1 На этом промежутке оба подмодульных выражения положительные, поэтому раскрываем их без смены знака: x-1-x-2>-3 -3>-3 Неравенство не имеет решений на этом промежутке Соединим решения 1 и 2 промежутков и получим такой ответ: x e(-беск.,1)
Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
sin²x=1:(1+ctg²x)=1:(1+2)=1/3
sinx=1/√3
cosx=-√(1-sin²x)=-√(1-1/3)=-√6/3
cos(π/4+x)=cosπ/4cosx-sinπ/4sinx=
=√2/2*(-√6/3)-√2/2*√3/3=√2/2(-√6/3-√3/3)=-√6/6*(√2+1)