x+20y+10xy=40
x+20y-10xy=-8
x+20y+10xy=40
(x+20y+10xy)-(x+20y-10xy)=40-(-8)
x+20y+10xy=40
x+20y+10xy-x-20y+10xy=40+8
x+20y+10xy=40
20xy=48
x+20y+10xy=40
xy=2.4
x+20y+24=40
xy=2.4
x+20y=16
y=2.4/x
x+20*2.4/x=16
y=2.4/x
x+48/x=16
y=2.4/x
(x+48/x)*x=16*x
y=2.4/x
x^2+48=16x
y=2.4/x
x^2-16x+48=0
y=2.4/x
(x-4)(x-12)=0
y=2.4/x
x1=4
x2=12
y1=2.4/4=0.6
y2=2.4/12=0.2
Проверка:
x1=4
y1=2.4/4=0.6
x+20y+10xy=40
4+20*0.6+10*4*0.6=40
4+12+24=40
40=40
x+20y-10xy=-8
4+20*0.6-10*4*0.6=-8
4+12-24=-8
-8=-8
x2=12
y2=2.4/12=0.2
x+20y+10xy=40
12+20*0.2+10*12*0.2=40
12+4+24=40
40=40
x+20y-10xy=-8
12+4-24=-8
-8=-8
1.
а)x^3-2x = х(х²-2)
б)5a^2-10ab+5b^2 = 5(a^2-2ab+b^2) = 5(a-b)²
в)cm-cn+3m-3n = (cm-cn)+(3m-3n) = с(m-n)+3(m-n) = (с+3)(m-n)
2.
2(p+q)²-p(4q-p)+q² = 3p²+3q² при любых p и q
2(p+q)²-p(4q-p)+q² = 2(p²+2pq+q²) -4pq+p²+q² = 2p²+4pq+2q² -4pq+p²+q² = 3p²+3q²
таким образом, мы привели левую часть к правой, тем самым доказав, что значения выражений будут равны при любых p и q
3.
(x-3)(x+3) = x(x-2)
х²-9=х²-2х
2х=9
х=4,5
ответ: при х=4,5
4.
а)(a-3b)(a+3b)+(2b+a)(a-2b) = (a²-9b²) + (a²-4b²) = 2a²-13b²
б)(p+q)(q-p)(q²+p²) = (q²-p²)(q²+p²) = q⁴-p⁴
5.
x³-27-3x(x-3)=0
(x³-3³)-3x(x-3)=0
воспользуемся формулой разности кубов:
(х-3)(х²+3х+9)-3x(x-3)=0
(х-3)(х²+3х+9-3х)=0
х-3=0 или (х²+3х+9-3х)=0
х=3 х²+9=0
х²=-9 - решений нет
ответ: х=3
10x^2+x-2=0
D=1-4*10*(-2)=1+80=81
√D=9
x1=(-1+9)/20=8/20=0,4
x2=(-1-9)/20=-10/20=-0,5
10x^2+x-2=10*(x-0,4)*(x+0,5)
2) знаменатель
x^2+2,1x-1=0
D=2,1^2+4=4,41+4=8,41
√D=2,9
x1=(-2,1+2,9)/2=0,8/2=0,4
x2=(-2,1-2,9)/2= - 5/2= - 2,5
x^2+2,1x-1=(x-0,4)*(x+2,5)
(10x^2+x-2)/(x^2+2,1x-1)=10*(x-0,4)*(x+0,5)/(x-0,4)*(x+2,5) = =10*(x+0,5)/(x+2,5) = (10x+5)/(x+2,5)