525 см в квадрате
Объяснение:
Обозначим длину разреза буквой x.Поскольку Ваня разрезал лист ватмана на два прямоугольника , то стороны этих прямоугольников , противоположные линии разреза, тоже равны x. Теперь сложим периметры двух этих частей . Мы получим периметр целого листа ватмана плюс удвоенную длину разреза, то есть 80 + 90 = 100 + 2x. Откуда x = 35 см. Посмотрим на первый прямоугольник. Его периметр 80 см, а сумма двух противоположных сторон равна 2 * 35 = 70 см.Значит,две другие его стороны в сумме дают 80 - 70 = 10 см.То есть каждая из них равна 10 : 2 = 5 см. Площадь этого прямоугольника равна 35 * 5 = 175 см в квадрате.
Точно так же найдем другие стороны второго прямоугольника. Получится (90 - 70) : 2 = 10 см. Значит, его площадь равна 35 * 10 = 350 см в квадрате.
Чтобы найти площадь целого листа ватмана, нужно просто сложить площади двух его частей. То есть площадь целого листа равна 175 + 350 = 525 см в квадрате.
Пусть х га - площадь первого поля, у га - площадь второго поля.
{40х + 35у = 2600
{40х + 0,1 · 40х + 35у + 0,2 · 35у = 2600 + 400
- - - - - - - - - - - - - - -
{40х + 35у = 2600
{40х + 4х + 35у + 7у = 3000
- - - - - - - - - - - - - - -
{40х + 35у = 2600 - сократим обе части уравнения на 5
{44х + 42у = 3000
- - - - - - - - - - - - - - -
{8х + 7у = 520
{44х + 6 · 7у = 3000
- - - - - - - - - - - - - - -
{7у = 520 - 8х
{44х + 6 · (520 - 8х) = 3000
44х + 3120 - 48х = 3000
3120 - 3000 = 48х - 44х
120 = 4х
х = 120 : 4
х = 30 (га) - площадь первого поля
- - - - - - - - - - - - - - -
7у = 520 - 8 · 30
7у = 520 - 240
7у = 280
у = 280 : 7
у = 40 (га) - площадь второго поля
ответ: 30 га и 40 га.
Длина вектора, заданного координатами, равна корню квадратному из суммы квадратов его координат.Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.
АВ{1;3}, |AB|=√(1+9)=√10.
BC{3;1}, |BC|=√(9+1)=√10.
CD{-1;-3},|CD|=√(1+9)=√10.
AD{3;1}, |AD|=√(9+1)=√10.
Итак, в четырехугольнике все стороны равны.
Ромбом называется параллелограмм, у которого все стороны равны.
Если все противоположные стороны ПОПАРНО равны: AB = CD, BC=DA, то четырехугольник АВСD - параллелограмм.
У нас выполняются оба условия, значит четырехугольник АВСD является ромбом или квадратом.
Но для того, чтобы доказать, что это НЕ КВАДРАТ, определим угол между двумя соседними векторами. Угол α между вектором a и b:
cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)].
В нашем случае: cosα=(3+3)/[√(1+9)*√(9+1)] = 6/10 = 0,6. То есть угол между векторами АВ и ВС НЕ ПРЯМОЙ. Этого достаточно, чтобы доказать, что четырехугольник АВCD не квадрат.
Следовательно, четырехугольник АВCD - РОМБ.
Что и требовалось доказать...