Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).
Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:
;
Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:
;
Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:
либо в векторном виде: ;
Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:
либо в векторном виде: ;
Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:
либо в векторном виде: ;
Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:
;
Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:
;
Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:
;
Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:
;
Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:
где либо в удельном виде: ;
Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:
;
Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:
;
Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:
;
Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:
;
Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:
;
Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:
где ;
Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:
;
Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:
либо в мощностном виде: ;
Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:
;
Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:
;
Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:
Преобразуем выражение x³-3x²-x+3=0 х²(х-3)-1*(х-3)=0 Вынесем общий множитель х-3, получим (х-3)(х²-1)=0 т. к. а²-в²=(а-в) (а+в) , получим (х-3)(х-1)(х+1)=0 Произведение равно нулю, если один из множителей равен нулю, т. е. х-3=0 или х-1=0 или х+1=0, отсюда х=3 или х=1 или х=-1 ответ уравнение имеет три корня 3; 1; -1 решите неравенство -2x²-5x больше либо равно -3 -2x²-5x ≥-3 или -2x²-5x +3≥0 Решим уравнение -2x²-5x +3=0 Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле Д=в²-4ас=(-5)²-4*(-2)*3=25+24=49 Корни квадратного уравнения определим по формуле х1=-в+√Д/2а=5+√49/2*(-2)=5+7/(-4)= 12/(-4)=-3 х2=-в-√Д/2а=5-√49/2*(-2)=5-7/(-4)= -2/(-4)=½ т. е. -2x²-5x +3=(-2)(х-½)(х+3)=(1-2х) (х+3) Отметим на числовой оси все корни уравнения и определим знак каждого промежутка -___-3+½-х у (-4)= (1-2(-4))(-4+3)=(1+8)(-1)=-9<0( знак минус на числовой оси) у (0)= (1-2*0)(0+3)=1*3=3>0( знак плюс на числовой оси) у (1)= (1-2*1)(1+3)=(-1)*4=-4<0( знак минус на числовой оси) Неравенство -2x²-5x +3≥0имеет смысл, согласно числовой оси, если х принадлежит промежутку [-3;½]