М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
senyaragimovoy1awn
senyaragimovoy1awn
18.05.2023 17:52 •  Алгебра

Варифметической прогрессии (bn) третий член равен 10 ,а десятый член равен 12,1. найдите все члены прогрессии (bn), расположенные между ними

👇
Ответ:
Крутой649
Крутой649
18.05.2023
B₃=10
b₁₀=12.1

b₁₀=b₃+7d
12.1=10+7d
12.1-10=7d
2.1=7d
d=2.1 : 7
d=0.3

b₄=b₃+d=10+0.3=10.3
b₅=b₄+d=10.3+0.3=10.6
b₆=b₅+d=10.6+0.3=10.9
b₇=b₆+d=10.9+0.3=11.2
b₈=b₇+d=11.2+0.3=11.5
b₉=b₈+d=11.5+0.3=11.8

10;  10.3;  10.6;  10.9;  11.2;  11.5;  11.8;  12.1

ответ: 10,3; 10.6; 10.9; 11.2; 11.5; 11.8
4,8(44 оценок)
Ответ:
itszhamilya1
itszhamilya1
18.05.2023
Крч берешь 10 и 7 раз прибавляешь по 0.3
10.3 10.6 10.9 11.2 11.5 11.8 12.1
4,6(44 оценок)
Открыть все ответы
Ответ:
Xzxzxzxzxzzxzxz
Xzxzxzxzxzzxzxz
18.05.2023
Уравнение четвёртой степени имеет вид:
   \alpha _0x^4+ \alpha _1x^3+ \alpha _2x^2+ \alpha _3x+ \alpha _4=0
Разделим обе части на коэффициент \alpha _0, получаем
             x^4+ \alpha x^3+ bx^2+cx+d=0
где a, b, c, d –  произвольные вещественные числа.

Уравнения вида приводится уравнение четвёртой степени, у которых отсувствует третьей степени., поэтому нужно сделать замену переменных, тоесть
   x=i- \frac{ \alpha }{4}, где \alpha - коэффициент перед х^3 и 4 - произвольные вещественные числа

В нашем случае такое уравнение: x^4+6x^3-21x^2+78x-16=0
Заменим x=i- \frac{6}{4} =i-1.5, получаем
 (i-1.5)^4+6(i-1.5)^3-21(i-1.5)^2+78(i-1.5)-16=0\\ i^4-6i^3+13.5i^2-13.5i+5.0625+6i^3-27i^2+40.5i-20.25-21i^2+\\+63i-47.25+78i-117-16=0\\ i^4-34.5i^2+168i-195.4375=0

Получаем кубическое уравнение: 2s^3-ps^2-2rs+rp- \frac{q^2}{4}=0
В нашем случае: p=-34.5;\,\,\,\,q=168;\,\,\,\,r=-195.4375
Подставляем и получаем уравнение
  2s^3+34.5s^2+2\cdot195.4375s+34.5\cdot195.4375- \frac{168^2}{4}=0\\ 64s^3-1104s^2+12508s-10029=0
Разложим одночлены в сумму нескольких
   64s^3-48s^2+1152s^2-864s+13372s-10029=0
Выносим общий множитель
16s^2(4s-3)+288s(4s-3)+3343(4s-3)=0\\ (4s-3)(16s^2+288s+3343)=0\\ s=0.75
Уравнение 16s²+288s+3343=0 решений не имеет, так как D<0

Таким образом для решения уравнения остается квадратное уравнение
i^2+i \sqrt{2s-p} - \frac{q}{2\sqrt{2s-p}}+s=0
Заменяем
  i^2+i\sqrt{2\cdot0.75+34.5}- \frac{168}{\sqrt{2\cdot0.75+34.5}} +0.75=0\\ 4i^2+24i-53=0\\ D=b^2-4ac=576+848=1424\\ i= \dfrac{-6\pm \sqrt{89} }{2}

Возвращаемся к замене
  x=i-1.5=\dfrac{-6\pm \sqrt{89} }{2}- \dfrac{3}{2} =\dfrac{-9\pm \sqrt{89} }{2}

Окончательный ответ: \dfrac{-9\pm \sqrt{89} }{2}.
4,6(12 оценок)
Ответ:
Если графики пересекаются, значит имеют общую точку (х;у). Тогда можно сделать вывод, что 3х-3=х-1 (х-1 взято из у+1-х=0, если у оставить в одной стороне, а другое перенести, то получится х-1) Решаем как обычное линейное уравнение 3х-3=х-1
                 2х=2
                х=1
Подставим значение х в любое из уравнений, получится что у=х-1
                                                                                             у=1-1
                                                                                             у=0
Подставляем значения как координаты точки и пересечения и получаем, что (1;0) точка пересечения
4,5(29 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ