Рассмотрим два крайних случая, чтобы доказать, что количество ребят не зависит от распределения 16 юношей по двум классам. 1) Пусть все 16 юношей в классе А, а в классе Б юношей нет. Тогда девушек в 10 А столько же, сколько юношей в 10 Б, то есть 0. Значит, в классе А 16 юношей, а в классе Б 24 девушки. Всего 40 ребят.
2) Пусть все 16 юношей в классе Б, и там еще 24-16=8 девушек. В классе А юношей нет, а девушек столько же, сколько юношей в Б, то есть 16. Опять получается, что в классе А 16 ребят, а в Б 24, всего 40 ребят.
(2-х)((2-х)²+(2-х)·х+4)=0
(2-х)(4-4х+х²+2х-х²+4)=0
(2-х)(-2х+8)=0
2-х=0 или -2х+8=0
х=2 -2х=-8
х=4
ответ: 2;4.