В решении.
Объяснение:
Решите задачу с составления уравнения. Разность двух чисел равна 17, а разность их квадратов 799. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х - у = 17
х² - у² = 799
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 17 + у
(17 + у)² - у² = 799
289 + 34у + у² - у² = 799
34у = 799 - 289
34у = 510
у = 510/34
у = 15 - второе число.
х = 17 + у
х = 17 + 15
х = 32 - первое число.
Проверка:
32 - 15 = 17, верно.
32² - 15² = 1024 - 225 = 799, верно.
√(a-b) / b
Объяснение:
Вторую скобку переводим в дробь:
1 + √((a+b)/(a-b)) = 1 + √(a+b)/√(a-b) = [√(a-b) + √(a+b)] / √(a-b)
Дальше, мы делим на эту дробь, то есть умножаем на перевёрнутую.
[2√a + √(a+b) - √(a-b)]*√(a-b)
(√a - √(a-b))*(√a + √(a+b))*(√(a-b) + √(a+b))
И тут самое главное: оставить числитель и разложить знаменатель:
[a - √a√(a-b) + √a√(a+b) - √(a-b)√(a+b)]*(√(a-b) + √(a+b)) =
= a√(a-b) - (a-b)√a + √a√(a^2-b^2) - (a-b)√(a+b) +
+ a√(a+b) - √a√(a^2-b^2) + (a+b)√a - (a+b)√(a-b) =
= a√(a-b) - a√a + b√a - a√(a+b) + b√(a+b) + a√(a+b) + a√a + b√a - a√(a-b) - b√(a-b) =
= 2b√a + b√(a+b) - b√(a-b) = b*(2√a + √(a+b) - √(a-b)
Получаем такую дробь:
(2√a + √(a+b) - √(a-b))*√(a-b)
b*(2√a + √(a+b) - √(a-b))
Две большие скобки сокращаются, и остаётся:
√(a-b) / b
Решениями этого неравенства являются все "x", удаленные от нуля на расстояние,не меньшее 5.
-505
(- бесконечность; -5] U [5; + бесконечность)