Решение.
1) (x - c)*(x - d) = x² + (c - d)x + cd
x² - xd - cx + cd = x² + cx - xd + cd
x² - xd - cx + cd - x² - cx + xd - cd = 0 ⇔ переменные не взаимоуничтожаются до конца ⇔ -2cx ≠ 0 - не является тождеством
2) (x - e)*(x + d) = x² - (e - d)x - ed
x² + xd - ex - ed = x² - ex + xd - ed
x² + xd - ex - ed - x² + ex - xd + ed = 0 ⇔ переменные взаимоуничтожаются ⇔ 0 = 0 - является тождеством
3) 12x² + y² - (8x² - 5y² - (-10x² + (5x² - 6y²))) = -x²
12x² + y² - 8x² + 5y² + 10x² + 5x² - 6y² = -x² ⇔ переменные не взаимоуничтожаются до конца ⇔ 20x² ≠ 0 - не является тождеством
4) 3a - (2a - (6a - (c - b) + c + (a + 8b) - 6c)) = 10a + 9b - 8c
3a - 2a + 6a + c + b + c + a + 8b - 6c = 10a + 9b - 8c
8а - 4с + 9b ≠ 10a + 9b - 8c - не является тождеством
ответ: равенство 2 - тождество.
2)(b²-3)³-(b²+3)(b^4-3b²+9)=b^6-9b^4+27b^2-27-b^6-27=-9b^4+27b²-54=
=-9(b^4-3b²+6)
3)(m²-1)(m^4+m²+1)-(m²-1)³=m^6-1-m^6+3m^4-3m²+1=3m^4-3m²=
=3m²(m²-1)
4)(x²-2)(x^4+2x²+4)-(x³-1)²=x^6-8-x^6+2x³-1=2x³-9