Попробуем догадаться об окончании условия неравенства. Упростим сначала левую часть:
Разложим квадр. трехчлен намножители:
x^2 - 7x + 6 = (x-6)(x-1) (так как корни по т.Виета 1 и 6)
Знаменатель также разложим на множители и после сокращений получим:
(х-6)(х-1) / (х(х+6))
Методом интервалов найдем знаки этого выражения на всей числовой оси с учетом ОДЗ: х не равен 0;+-6.
(+) (-) (+) (-) (+)
(-6)(0)(1)(6)
Судя по заданию, неравенство должно заканчиваться: <0 (или <=0)
В любом случае наибольшее целое число из отрицательных областей равно 5.
ответ: 5
Все задачи на движение требуют для начала вспомнить основную формулу, связывающую скорость, путь и время:
V=S/t/
Задачи на движение по реке чаще всего содержат в себе:
Моторные лодки или катера, обладающие собственным двигателем или судна которые плывут с ручной гребли.
Плот или иные судна, которые могут плыть ТОЛЬКО по течению и со скоростью, равной скорости течения.
Также в таких задачах всегда следует учитывать, что при движении по течению к собственной скорости судна прибавляется скорость течения. А когда движение происходит против течения, наоборот, из собственной скорости судна следует ВЫЧЕСТЬ скорость течения.
Учитывая все выше изложенное составим уравнение для задачи:
Время на весь путь 14 часов.
ВРЕМЯ движения по теч-ю ПЛЮС ВРЕМЯ движ-я против течения = 14ч.
Из основной формулы выразим ВРЕМЯ (t).
t=S/V
t(по теч)=S(по теч) / V(по теч)
t(прот теч)=S(прот теч) / V(прот теч)Пусть х собственная скорость,
тогда (х+2) км/ч скорость по течению реки, а (х-2) км/ч скорость против течения.
Получим
45/(х+2)+45/(х-2)=14
45х-90+45х+90=14х²-56
90х=14х²-56
14х²-90х-56=0
7х²-45х-28=0
D=2025-4*7*(-28)=2809
х=(45+53)/14=7 км/ч собственная скорость спортивной лодки
ответ:7 км/ч
1,2:2-5=-4,4