М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Erekcia
Erekcia
20.07.2021 17:33 •  Алгебра

Разность двух положительных чисел равна 2. если от квадрата большего из них отнять произведение этих чисел, то получится 8. найдите эти числа с пояснением .)

👇
Ответ:
starikoe
starikoe
20.07.2021
Допустим x-большее, тогда 
x-y=2
x^{2} -xy=8
объединяем в систему
выражаем из первого y, x-2=y
подставляем во 2 x^{2} -x(x-2)=8, x^{2} - x^{2} +2x=8,2x=8,x=4, y=4-2=2
4,8(44 оценок)
Открыть все ответы
Ответ:
rostislav2017
rostislav2017
20.07.2021
Применим формулу синуса половинного угла слева и синуса двойного угла справа:
2sin²(x/2) = 2·2sin(x/2)cos(x/2)·sin(x/2)
2sin²(x/2) = 4sin²(x/2)cos(x/2)
2sin²(x/2) - 4sin²(x/2)cos(x/2) = 0
2sin²(x/2) ·(1 - 2cos(x/2)) = 0
sin²(x/2) = 0       или       1 - 2cos(x/2) = 0
x/2 = πn, n∈Z                  cos(x/2) = 1/2
x = 2πn, n∈Z                   x/2 = π/3 + 2πk, k∈Z или x/2 = - π/3 + 2πm, m∈Z
                                         x = 2π/3 + 4πk, k∈Z          x = - 2π/3 + 4πm, m∈Z

               2sin²(x/2)  -  4sin²(x/2)cos(x/2) = 0
               2sin²(x/2)  -  2·2sin²(x/2)cos(x/2) = 0
                          это выносим

2sin²(x/2) · ( 1         -        2cos(x/2)) = 0
4,7(82 оценок)
Ответ:
MariHarutyunyan
MariHarutyunyan
20.07.2021
Формулы для квадратов(a±b)2=a2±2ab+b2 a2−b2=(a+b)(a−b)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
Формулы для кубов(a±b)3=a3±3a2b+3ab2±b3a3±b3=(a±b)(a2∓ab+b2)(a+b+c)3=a3+b3+c3+3a2b+3a2c+3ab2+3ac2+3b2c+3bc2+6abc
Формулы для четвёртой степени(a±b)4=a4±4a3b+6a2b2±4ab3+b4 a4−b4=(a−b)(a+b)(a2+b2) (выводится из a2−b2)
Формулы для n-ой степени an−bn=(a−b)(an−1+an−2b+an−3b2+...+a2bn−3+abn−2+bn−1) a2n−b2n=(a+b)(a2n−1−a2n−2b+a2n−3b2−...−a2b2n−3+ab2n−2−b2n−1), где n∈N a2n−b2n=(an+bn)(an−bn) a2n+1+b2n+1=(a+b)(a2n−a2n−1b+a2n−2b2−...+a2b2n−2−ab2n−1+b2n), где n∈N
4,6(65 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ