1. Доказать тождество
sinα +sin5α+sin7α +sin11α = 4cos2α*cos3α*sin6α
sinα +sin5α+sin7α +sin11α =(sin5α +sinα) +(sin11α+sin7α) =
2sin3α*cos2α +2sin9α*cos2α =2cos2α*(sin9α+sin3α)=
2cos2α*2sin6α*cos3α =4cos2α*cos3α*sin6α
- - - - - - -
2.Найдите значение выражения sin2α*cos5α -sinα*cos6α ,если sinα = -1/√3
- - -
Cначала упростим выражение:
sin2α*cos5α -sinα*cos6α =2sinα*cos∝*cos5α - sinα*cos6α =
sinα(2cos5α*cos∝ - sinα*cos6α )=sinα*(cos6∝+cos4α -cos6α ) =
sinα*cos4α =sinα*(1 - 2sin²2α) = sinα*( 1 -2*(2sinα*cosα)² )=
= sinα*( 1 -8sin²α*cos²α ) =sinα*( 1 -8sin²α*(1 -sin²α) ) = || sinα =-1/√3 ||
= (-1/√3)*( 1 -8*(-1/√3)² *(1 - (-1/√3)² ) = - 1/√3 *( 1- (8/3)*(2/3) ) = 7√3 / 27
490 мин
Объяснение:
Весь круг циферблата часов разделён на 60 минутных делений.
За 1 час минутная стрелка проходит эти 60 делений. В то же время часовая стрелка проходит 5 делений.
Тогда скорость конца минутной стрелки 1 дел /мин, а часовой стрелки 1/12 дел/ мин.
От 3.50 до 4-х часов пройдёт 10 минут
Начнёи теперь двигаться от 16,00 .
1-й раз стрелки встретятся между 16.00 и 17.00
2-й раз между 17.00 и 18.00
И так далее.
8-й раз стрелки встретятся между 11.00 и 12.00
При этом от 11.00 до 12.00 минутная стрелка пройдёт 55 делений и ещё х делений, а минутная стрелка за то же время х делений
Составим уравнение (55 + х) : 1 = х : 1/12
55 + х = 12х
11х = 55
х = 5
Получилось, что при движении минутная стрелка делений, а минутная 5 делений. Это означает, что в 8-й раз минутная и часовая стрелка встретятся ровна в 12 часов.
12час - 3час 50мин = 8час 10мин = 490 мин
sqrt(t)=10. подставляем . sqrt ( sqrt(2) -x)=10. Возводим опять в квадрат.
sqrt(2)-x -100. x= sqrt(2)-100.