Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х). Определение 2. Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х). Пример 1. Доказать, что у = х4 — четная функция. Решение. Имеем: f(х) = х4, f(-х) = (-х)4. Но (-х)4 = х4. Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной. Аналогично можно доказать, что функции у — х2,у = х6,у — х8 являются четными. Пример 2. Доказать, что у = х3~ нечетная функция. Решение. Имеем: f(х) = х3, f(-х) = (-х)3. Но (-х)3 = -х3. Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной. Аналогично можно доказать, что функции у = х, у = х5, у = х7 являются нечетными. Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х3, у = х5, у = х7 — нечетные функции, тогда как у = х2, у = х4, у = х6 — четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n — натуральное число, можно сделать вывод: если n — нечетное число, то функция у = х" — нечетная; если же n — четное число, то функция у = хn — четная. Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Функция Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х). Итак, функция может быть четной, нечетной, а также ни той ни другой.
S(3)=(2a1+2d)*3/2=15; |*2 (2a1+2d)*3=30; |:3 2a1+2d=10; |:2 (1) a1+d=5; - первое уравнение системы Составим второе уравнение системы: a2=a1+d; a3=a1+2d; a1²+(a1+d)²+(a1+2d)²=93; a1²+(a1²+2a1*d+d²)+(a1²+4a1*d+4d²)-93=0; (2) 3a1²+5d²+6a1*d-93=0; - второе уравнение системы Из (1) выражаем а1 и подставляем в (2): (1) а1=5-d; (2) 3(5-d)²+5d²+6(5-d)*d-93=0; 3(25-10d+d²)+5d²+30d-6d²-93=0; 75-30d+3d²+5d²+30d-6d²-93=0; 2d²-18=0; 2d²=18; d²=9; d=-3 или d=3. Если d=-3, то a1=5-d=5-(-3)=5+3=8; Если d=3, то a1=5-d=5-3=2. ответ: a1=8 и d=-3 или a1=2 и d=3.
После первого шага я вычел из второго уравнения первое