Так как учителя запрещают использовать примерное значение корня из 6,то: 1)Берем из данного выражения число с корнем,в нашем случае √6 Помещаем его в границы чисел,из которых извлекается полный квадратный корень,т.е. <√6< 2<√6<3
Теперь надо преобразовать √6 так,чтобы получить исходное выражение,числа слева и справа,конечно же,тоже будут меняться.
2)Умножим всё на 5 10<5√6<15
3)прибавляем 1 11<5√6+1<16 ответ: число 5√6 +1 расположено между числами 11 и 16. ------------------------------- (√11+1) в квадрате =11+2√11+1=2√11+12 Используя ту же схему получаем: 1) <√11< 3<√11<4
2)умножаем на 2 6<2√11<8
3)прибавляем 12 18<2√11+12<20 18<(√11+1) в квадрате<20 ответ: число (√11+1) в квадрате находится между числами 18 и 20
производная
у ` = -6x²+30x
-6х²+30х=0,
-6х(х-5)=0
х=0 или х=5
- + -
05
функция возрастает там, где производная положительна, т.е на (0;5)
2)
Производная: 3x^2+5x-2. Находим стационарные точки.
3x^2+5x-2=0; x1=(-5+sqrt(25+24))/6=1/3; x1=(-5-sqrt(25+24))/6=-2
fштрих(-3)=3*9-5*3-2>0; fштрих(-1)=3*1-5*1-2<0 Значит x=-2 - точка максимума
fштрих(0)=3*0-5*0-2<0; fштрих(1)=3*1+5*1-2>0 Значит x=1/3 - точка минимума
f(-2)=(-2)^3+2,5*(-2)^2-2*(-2)=-8+10+4=6
3)))
производная:
y`=15x^4-15x^2
Прирав к нулю:
15x^2(x-1)(x+1)=0
x=0 или х=1 или х=-1
Если х=0, то у=-3
Если х=1, то у=-5
Если х=-1, то у=-1
Соответственно, сумма значений функции в точках экстремума: -3+(-5)+(-1)=-9
ответ: -9