Вы имеете в виду квадратный алгебраический корень? Да. Например, есть выражение . Чтобы извлечь его из под корня, нужно извлечь из под корня , а затем . Если степень четная, то уменьшаем ее в 2 раза, если нечетная, то из под корня полностью число в этой степень извлечь нельзя. Итак, ====== Обоснование. Корень можно представлять как число под корнем, возведенное в определенную степень. Общий пример: Примеры: ---- Зная эту информацию, проделаем извлечение из под корня: В этом случае . возведено в 1 степень, то есть, степень корня — 2 (). Перейдем от записи в виде корня к записи в виде степени: Согласно свойствам степеней , тогда:
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.