М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
НикитаДикий
НикитаДикий
26.06.2022 16:03 •  Алгебра

Дана функция у = - х2+2х+8. найти: 1) область определения функции; 2) точки пересечения функции у = f(x) с осью ох; 3) исследовать функцию на четность, нечетность, 4)интервалы монотонности; 5) точки экстремумов; 6) построить график функции; 7) вычислить площадь криволинейной трапеции, ограниченной графиком у = f(x), осью ох и прямыми х=1 и х=5.

👇
Ответ:
q1w99
q1w99
26.06.2022

Функция y(x) = -x^2 + 2x + 8

 

1) Очень дико видеть "область определения", потому что это то, что задаёт математик. Область существования вещественных прообразов называть "область определения" — дичь! Так вот, область существования аргумента здесь — всё множество действительных чисел ("вся числовая прямая").

 

2) Пересечение с осью аргументов означает равенство y = 0. То есть требуется решить уравнение -x^2 + 2x + 8 = 0. Это алгебраическое уравнение второго порядка. Два его корня суть 6 и -2.

 

3) Чётность/нечётность (x - 6)(x + 2) = 0 относительно оси значений (x = 0)? Нет, не обладает свойствами ни чётности, ни нечётности.

 

4) Тут меня раза три остановили, когда я стал исследовать на экстремумы через производную. Если исследовать всё-таки через производные, то

 

\frac{d}{dx} \cdot \left(-x^2 + 2x + 8\right) = -2x + 2

 

Точки экстремума: -2x + 2 =0 \Leftrightarrow x = 1 0[/tex]

 

Вторая производная: \frac{d^2}{dx^2} \cdot \left(-x^2 + 2x + 8\right) = -2 => выпуклость вверх для любого значения агрумента (прообраза) => точки экстремума — максимумы.

 

Функция монотонно возрастает при x < 1 и монотонно убывает при x > 1.

 

5) Точки экстремумов были найдены выше.

 

6) Рисунок 1 в аттаче.

 

7) Они хотят интеграл? Ого. Не, это только завтра.


Дана функция у = - х2+2х+8. найти: 1) область определения функции; 2) точки пересечения функции у =
4,7(80 оценок)
Открыть все ответы
Ответ:
edsrghhythg
edsrghhythg
26.06.2022
Свойства степени с натуральным показателем справедливы и для степени с любым целым показателем (нужно только предполагать, что основание степени не равно нулю).1 свойство:     При умножении степеней с одинаковыми основаниями основание оставляют тем же, а показатели степеней складывают.Пример:  2 свойство:       При делении степеней с одинаковыми основаниями основание  оставляют  тем же, а из показателя степени делимого вычитают показатель степени делителя.Пример:     = =3 свойство:     При возведении степени в степень основание оставляют прежним, а показатели перемножают.Пример:   4  свойство:     При возведении в степень произведения возводят в эту степень каждый множитель и результаты перемножают.Пример: = 2–2 . (a3)–2(b–5)–2 =  a–6b10.5  свойство:     ,        где в =/= 0.Пример: 
4,4(94 оценок)
Ответ:
Crazy2daisy
Crazy2daisy
26.06.2022
1) (х^2+x)(x-7)>или= 0; х^3-7х^2+х^2-7х>или=0; х^3-6х^2-7х>или=0; х(х^2-6х-7)>или=0; получаем два неравенства: 1)х>или=0; 2) х^2-6х-7>или=0; D=(-6)^2-4*1*(-7)=36+28=64; x1=6+8/2=7; x2=6-8/2=-1
2) x(2-х)>0; 2х-х^2>0; х(2-х)>0; получаем два неравенства: 1)х>0; 2)2-х>0; -х-2; х<2
3) 5х(3+х)(х-9)<0; (15х+5х^2)(х-9)<0; 15х^2+5х^3-135х-45х^2<0; 5х^3-30х^2-135х<0; 5х(х^2-6х-27)<0; получаем два неравенства: 1)5х<0; х<0; 2)х^2-6х-27<0; D=(-6)^2-4*1*(-27)=36+108=144; х1=6+12/2=9; х2=6-12/2=-3
4)0,4х(7-х)(х-0,8)<или=0; (2,8х-0,4х^2)(х-0,8)<или=0; 2,8х^2-2,24х-0,4х^3+0,32х^2<или=0; -0,4х^3+3,12х^2-2,24х<или=0; 0,4х(-х^2+7,8х-5,6)<или=0; получаем два неравенства: 1)0,4х<или=0; х<или=0; 2) -х^2+7,8х-5,6<или=0; D=7,8^2-4*(-1)*(-5,6)=60,84-22,4=38,44; x1=-7,8+6,2/-2=0,8; x2=-7,8-6,2/-2=7
4,6(8 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ