У нас равнобедренная трапеция. Обозначим её АВСД. АВ = СД = 13 см ВС = 8 см АД = 18 см Из верхних вершин В и С опустим перпендикуляры на нижнее основание. Точки пересечения обозначим К и Л Получим посередине прямоугольник КВСЛ , по бокам 2 равных треугольника АВК и СЛД АК = ЛД = (18 - 8) : 2 = 5 (см) По теореме Пифагора из треугольника СЛД определим СЛ СЛ^2 = СД^2 - ЛД^2 = 13^2 - 5^2= 169 - 25 = 144 CЛ = 12 (см) Площадь трапеции = 1/2 СЛ * АД Площадь трапеции = 1/2 * 12 * 18 = 108 (см2) ответ: 108 см2 - площадь трапеции
s5=y1*(g^5-1)/g-1 s5=256*((3/4)^5-1)/3/4-1= 256(243/1024-1)/(-1/4)=
=256*(-781/1024)/(-1/4)=-781/4*(-4/1)=781