1.
(sin3A+sinA) / (cos3A+cosA) =
= (2·sin((3A+A)/2)·cos((3A-A)/2)) / (2·cos((3A+A)/2)·cos((3A-A)/2)) =
= (2·sin2A·cosA) / (2·cos2A·cosA) =
= (2·sin2A) / (2·cos2A) =
= (2·sin2A·cos2A) / (2·cos2A·cos2A) =
= (sin4A) / (2·cos²2A) =
= (sin4A) / (2·cos²2A) = (sin4A) / (1+cos4A)
2.
4·cos(A/3)·cos(A/4)·cos(A/6) =
= 4·cos(A/4)·(cos(A/3)·cos(A/6)) =
= 4·cos(A/4)·(1/2)·(cos(A/3+A/6)+cos(A/3-A/6)) =
= 2·cos(A/4)·(cos(A/2)+cos(A/6)) =
= 2·cos(A/4)·cos(A/2)+2·cos(A/4)·cos(A/6) =
= 2·(1/2)·(cos(A/4+A/2)+cos(A/4-A/2)) +
+ 2·(1/2)·(cos(A/4+A/6)+cos(A/4-A/6)) =
= cos(3A/4)+cos(-A/4)+cos(5A/12)+cos(A/12) =
= cos(3A/4)+cos(A/4)+cos(5A/12)+cos(A/12)
а)(3b-2)(4b-2)=12b²-6b-8b+4=12b²-14b+4
б)(6а+х)(2a-3х)=12a²-18ax+2ax-3x²=12a²-16ax-3x²
в)(c+1)(c^2+3c+2)= с³+3с²+2с+с²+3с+2=с³+4с²+5с+2
2)
2х(х-1)-3(х-1)=(x-1)(2x-3)
ab+ac+4b+4c=(ab+ac)+(4b+4c)=a(b+c)+4(b+c)=(a+4)(b+c)