Промежутки возрастания и убывания функции 1)f(x)= 5x^4 2)f(x)=x^2-4x-3 промежутки возрастания и убывания функции и точки экстремума f(x)=12+72x+3x^2-x^3
Промежуток возрастания - это промежуток, на котором производная положительна. Промежуток убывания - это промежуток, на котором производная отрицательна. Что делать? 1) ищем производную 2) приравниваем её к нулю и решаем получившееся уравнение 3) ставим корни на числовой прямой и проверяем знаки производной на каждом числовом промежутке. 4) пишем ответ. Начали? 1) f '(x) = 20x³ 20x³= 0 x = 0 -∞ - 0 + +∞ знаки f'(x) =20x³ ответ: при х ∈ (-∞;0) f(x) убывает при х ∈ (0; +∞) f(x) возрастает 2) f '(x) = 2x -2 2x -2 = 0 x = 1 -∞ - 1 + +∞ это знаки f '(x) = 2x -2 ответ: при х∈ (-∞; 1) f(x) убывает при х ∈ (1;+∞) f(x) возрастает х = 1 - это точка минимума 3)f '(x) = 72 +6x -3x² 72 +6x -3x² = 0 x² -2x - 24 = 0 По т. Виета х = 6 и х = -4 -∞ - -4 + 6 - +∞ это знаки f '(x) = 72 +6x -3x² ответ: при х ∈ (-∞; -4) ∪ ( 6; +∞) f(x) - убывает при х ∈(-4; 6) f(x) возрастает х = -4 - это точка минимума х = 6 - это точка максимума.
Центр вписанной окружности лежит в точке пересечения биссектрис, значит ОС и OD - биссектрисы. Сумма углов, прилежащих к боковой стороне трапеции, равна 180°, значит сумма их половинок равна 90°: ∠KDO + ∠KCO = 90°, но тогда в треугольнике ODC угол DOC равен 90°.
ОК - радиус, проведенный в точку касания, значит ОК⊥CD. ОК - высота прямоугольного треугольника ODC, проведенная к гипотенузе. Квадрат высоты прямоугольного треугольника равен произведению отрезков, на которые она разбивает гипотенузу: ОК² = СК · KD = 4 ОК = 2 - радиус окружности.
NL - диаметр, проведенный в точки касания, NL⊥BC, АВ⊥ВС, ⇒ NL║AB, и NL = AB как расстояния между параллельными прямыми.
АВ = NL = 2ОК = 4
Если в четырехугольник вписана окружность, то суммы противолежащих сторон равны: АВ + CD = AD + BC = 4 + 5 = 9
X⁵y⁴ + z⁵z⁴ + y⁵x⁴ + y⁵z⁴ + z⁵x⁴ + z⁵y⁴ ≥ 6x³y³z³ Разделим на 6: (x⁵y⁴ + x⁵z⁴ + y⁵x⁴ + y⁵z⁴ + z⁵x⁴ + z⁵y⁴)/6 ≥ x³y³z³ Заметим, что перемножив все слагаемые, получим: x⁵y⁴·x⁵z⁴·y⁵x⁴·y⁵z⁴·z⁵x⁴·z⁵y⁴ = x¹⁸y¹⁸z¹⁸ Количество слагаемых - 6. Значит, в правой части представлено среднее арифметическое шести чисел, а в правой части - среднее геометрическое. Как известно, среднее арифметическое n-ого количества чисел больше n-ого количества среднего геометрического этих же чисел (или равно, если все n чисел равны между собой).
Промежуток убывания - это промежуток, на котором производная отрицательна.
Что делать? 1) ищем производную
2) приравниваем её к нулю и решаем получившееся уравнение
3) ставим корни на числовой прямой и проверяем знаки производной на каждом числовом промежутке.
4) пишем ответ.
Начали?
1) f '(x) = 20x³
20x³= 0
x = 0
-∞ - 0 + +∞ знаки f'(x) =20x³
ответ: при х ∈ (-∞;0) f(x) убывает
при х ∈ (0; +∞) f(x) возрастает
2) f '(x) = 2x -2
2x -2 = 0
x = 1
-∞ - 1 + +∞ это знаки f '(x) = 2x -2
ответ: при х∈ (-∞; 1) f(x) убывает
при х ∈ (1;+∞) f(x) возрастает
х = 1 - это точка минимума
3)f '(x) = 72 +6x -3x²
72 +6x -3x² = 0
x² -2x - 24 = 0
По т. Виета х = 6 и х = -4
-∞ - -4 + 6 - +∞ это знаки f '(x) = 72 +6x -3x²
ответ: при х ∈ (-∞; -4) ∪ ( 6; +∞) f(x) - убывает
при х ∈(-4; 6) f(x) возрастает
х = -4 - это точка минимума
х = 6 - это точка максимума.