Пусть первое число х, тогда второе число на у больше первого,а третье число больше второго так же на у. 1число-х 2число-х+y 3число-х+2у По условию задачи произведение первого числа на третье,меньше квадрата второго на 49. Составим уравнение: (x+y)^2-x(x+2y)=49 x^2+2xy+y^2-x^2-2xy=49 y^2=49 y1=7 y2= -7 По условию задачи даны натуральные числа,поэтому у2 не удовлетворяет условию задачи. Значит второе число больше первого на 7, а третье число,которое является наибольшим числом на 14 больше первого числа,которое является наименьшим. Т.е. наименьшее число меньше наибольшего на 14.
lim((2x²/x²+15x/x²+25/x²)/(x²/x²+15x/x²+50/x²))= x->∞ =lim((2+15/x+25/x²)/(1+15/x+50/x²)=2/1=2 x->∞ величинами 15/x, 25/x², 50/x² можно пренебречь, т.к при x->∞ их значение ->0. они бесконечно малы
1. верно 311,113,131 простые числа
2. ложь произведение четное,если 1 из мнодителдя четное
3. верно 421, 241 простые 124,142 составные
4 .ложь 3 и 5 простые ,а 3*5=15 составное
5 .ложь сумма будет нечетное 2+1=3
6 верно 4+1=5