y = 2x^3 - 3x^2 - 12x + 1 – это кубическая функция, проверим имеет ли она максимумы и минимумы, для этого найдем производную и приравняв у нулю, найдем промежутки возрастания и убывания. Если они имеются.
y = (2x^3 - 3x^2 - 12x + 1)’ = 6x^2 – 6x – 12;
6x^2 – 6x – 12 = 0;
x^2 – x – 2 = 0;
D = b^2 – 4ac;
D = (- 1)^2 – 4 * 1 * (- 2) = 1 + 8 = 9; √D = 3;
x = (- b ± √D)/(2a);
x1 = (1 + 3)/2 = 4/2 = 2;
x2 = (1 - 3)/2 = - 2/2 = - 1
Точки с абсциссами (- 1) и 2 – являются экстремумами, но ни одна из них не принадлежит промежутку [4; 5]. Значит наибольшее значение функции будет либо в точке 4, либо в точке 5.
y(4) = 2 * 4^3 – 3 * 4^2 – 12 * 4 + 1 = 128 – 48 – 48 + 1 = 129 – 96 = 33
y(5) = 2 * 5^3 – 3 * 5^2 – 12 * 5 + 1 = 250 – 75 – 60 + 1 = 251 – 135 = 116 – это наибольшее значение функции на интервале [4; 5].
ответ. max [4; 5] y = у(5) = 116.
ответ:
данные решаются по одному алгоритму.
продемонстрируем на примере первой функции (вторая исследуется аналогично, только функция не определена в точке х=4):
1)
функция не определена в точке x = - 4.
поэтому:
x ∈ (-∞; -4) ∪ (-4; +∞)
2)
находим производную функции:
y'(x) = [(x²+3x)'·(x+4)-(x²+3x)·(x+4)'] / (x+4)²
y'(x) = [(2x+3)·(x+4)-(x²+3x)·1] / (x+4)²
y'(x) = (x²+8x+12) / (x+4)²
3)
приравняем производную к нулю:
x²+8x+12 = 0
x₁ = - 6
x₂ = -2
4)
на интервале x∈(-∞; -6)
y'(x) > 0; функция монотонно возрастает.
на интервале x∈(-6; -4)
y'(x) < 0; функция монотонно убывает.
в точке x = -6 - максимум функции.
y(-6) = - 9
5)
на интервале x∈( -4; -2)
y'(x) < 0; функция монотонно убывает .
на интервале x∈(-2; +∞)
y'(x) > 0; функция монотонно возрастает.
в точке x = - 2 - минимум функции.
y(-2) = -1
6)
для контроля строим график
объяснение: