М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
blurryriden
blurryriden
03.09.2022 03:37 •  Алгебра

Вклассе13девочек и18 мальчиков.каждый ученик принёс для классной библиотеки по3 книги.сколько книг принесли дети.

👇
Ответ:
vadimkor06
vadimkor06
03.09.2022
Складываем количество детей 
13+18=31
Потом умножаем на 3 книги
31*3=93
4,4(58 оценок)
Ответ:
usik6
usik6
03.09.2022
(13 + 18) х 3 = 93
1) 13 + 18 = 31
2) 31 х 3 = 93
4,4(62 оценок)
Открыть все ответы
Ответ:
bochinskaya06
bochinskaya06
03.09.2022

Раздел долго плана: Школа: Каскабулакская средняя школа

5.3C Множества ФИО учителя: Рашидов Махмуд Исмаилович

Дата: 28.07.2017г.

Класс: 5 Количество присутствующих:15 отсутствующих:

Тема урока

Объединение и пересечение множеств

Цели обучения, которые достигаются на данном уроке (ссылка на учебную программу)

5.4.1.2 знать определения объединения и пересечения множеств;

5.4.1.3 находить объединение и пересечение заданных множеств, записывать результаты, используя символы , ;

Цели урока

Дать определения объединения и пересечения множеств формированию навыков находить объединения и пересечение заданных множеств и записывают результаты используя символы , ;

Критерии успеха

Учащийся достиг цели обучения, если:

1. знает определения объединения и пересечения множеств

2. находит объединение и пересечение заданных множеств. 3.записывает результаты, используя символы , ;

Языковые цели

В ходе урока учащиеся будут оперировать новыми терминами и понятиями, комментировать порядок выполнения действий с множествами

Предметная лексика и терминология:

множества, пересечение и объединение; подмножества, пересекающиеся и непересекающиеся множества, пустое множество, элементы множества.

Точность и ясность словесного выражения мыслей.

Привитие ценностей

Воспитание чувства патриотизма. Формирование и поддержание доверительных межличностных отношений, взаимного уважения, взаимной ответственности. Воспитание цельной и порядочной личности, формирование у учащихся коммуникативных навыков и навыков лидера 21го века.

Межпредметные связи

Знания, полученные в данном разделе, найдут применение в алгебре, геометрии, биологии, истории.

Навыки использования ИКТ

Интерактивная доска, презентация ,интернет, мобильные устройства.

Предварительные

знания

Знает понятия множества и его элементов, пустого множества;

Определяет характер отношений между множествами (пересекающиеся и непересекающиеся множества);

Знаком с понятием подмножества;

Умеет использовать символы , , , , ,  при работе с множествами;

Ход урока

Запланированные этапы урока

Запланированная деятельность на уроке

Ресурсы

Начало урока

Оргмомент

Позитивный психологический настрой на урок

(3 мин)

Деление на группы с приема «Множества»

(5-мин)

Целеполагание

Постановка цели урока и определение критериев успеха и оценивания.

(5 мин)

Групповая работа

(3 мин)

Середина урока.

Презентация новой темы

(5мин)

Приветствует учеников, проверяет готовность к уроку, желает успеха.

Метод «Дерево достижений»

Педагог. Обратите внимание на наше одинокое дерево. У каждого из вас есть листочки разного цвета. Я по вас взять один из них (любого цвета) и нашему дереву покрыться разноцветной листвой.

Тех, кто выбрал зеленый лист, ожидает успех на сегодняшнем занятии.

Те, кто выбрал

Красный, — желают общаться.

Желтый — проявят активность.

Синий — будут настойчивы.

Помните, что красота дерева зависит от вас, ваших стремлений и ожиданий.

Деление на группы прием «Множества»

Ученики делятся на группы, выбирая разных животных – птицы, млекопитающие, насекомые.

Используя прием деления на группы, учитель наводит на тему урока, задавая наводящие во тем самым актуализирует знания учащихся о множествах.

Что такое множество?

Назовите элементы:

множества «Времена года»

множества «Дни недели»

Что такое подмножество?

Назовите подмножество:

Множества «Растения»

Множества «Спортсмены»

Цели уроки определяются с приема «Проблемная ситуация».

Введение в урок проблемного диалога необходимо для определения учащимися границ знания — незнания. Создание на уроке проблемной ситуации дает возможность учащемуся сформулировать цель занятия.

Учитель показывает ученикам задачу.

Махмуд и Екатерина содержат аквариумных рыбок. Махмуд коллекционирует только меченосцев, а Екатерина- рыбок красного цвета. У детей 8 меченосцев, а красных рыбок-7. Всего у детей-12 рыбок. Возможно ли такое?

Объяснение:

4,8(91 оценок)
Ответ:

\begin{equation*}\begin{cases}y+a=\frac{2x}{x+|x|}\\(x+a)^2=y+3\end{cases}\end{equation*}\Leftrightarrow\begin{equation*}\begin{cases}y=1-a\\y=(x+a)^2-3\\x0\end{cases}\end{equation*}

В первом уравнении мы раскрыли модуль: при x > 0 уравнение имеет вид y + a = 1, при x ≤ 0 оно не определено.

График первого уравнения - прямая, параллельная оси Ox, которая определена при x > 0. График второго уравнения - парабола, её вершина имеет координаты (-a; -3). При движении прямой вниз парабола сдвигается влево, а при движении прямой вверх - вправо.

Система имеет одно решение, если прямая касается параболы или парабола пересекает её один раз.

1 случай. Касание. Прямая, которая касается параболы, имеет уравнение y = -3 ⇒ 1 - a = -3 ⇔ a = 4. Но тогда вершина параболы будет иметь координату (-4; -3), а при x < 0 первое уравнение не определено. a = 4 не подходит.

2 случай. Пересечение. Если бы прямая y = 1 - a была определена в точке x = 0, то парабола имела бы одно пересечение с прямой в некой точке (0; y₁), двигалась вправо, пока её левая ветвь вновь не пересекла прямую в точке (0; y₂). Но x = 0 не входит в область определения, поэтому это лишь меняет границы полуинтервала местами (т. е. если левая граница была исключена, а правая включена, то сейчас наоборот: левая включена, правая исключена). Подставим координаты (0; y) и составим уравнение:

(0+a^2)-3=1-a\\a^2+a-4=0\\a_{1}=\frac{-1-\sqrt{17}}{2}; a_{2}=\frac{-1+\sqrt{17}}{2}

Правая граница исключается, иначе не будет пересечений, левая включается, т. к. при таком a всё ещё будет одно пересечение.

ответ: a\in[\frac{-1-\sqrt{17}}{2}; \frac{-1+\sqrt{17}}{2})

4,4(85 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ