1) Разложить на множители:
3a+3a²-b-ab=(3a+3a²)+(-b-ab)=3a(1+a)+(-(b+ab))=3a(1+a)-(b+ab)=3a(1+a)-b(1+a)=(1+a)(3a-b)
2) Преобразуйте произведения (n²-n-1)(n²-n+1) в многочлен стандартного вида:
Для того чтобы данное выражение преобразовать в многочлен, необходимо перемножить обе скобки
(n²-n-1)(n²-n+1)=n⁴-n³+n²-n³+n²-n-n²+n-1
далее группируем (или приводим подобные члены)
n⁴+(-n³-n³)+(n²+n²-n²)+(-n+n)-1=n⁴-2n³+n²-1
3) Известно,что 2(a+1)(b+1)=(a+b)(a+b+2).Найдите a²+b²
За основу берём выражение
2(a+1)(b+1)=(a+b)(a+b+2)
поочерёдно раскрываем скобки
2(аb+a+b+1)=a²+ab+2a+ab+b²+2b
2ab+2a+2b+2=a²+ab+2a+ab+b²+2b
группируем правую половину уравнения
2ab+2a+2b+2=a²+(ab+ab)+2a+b²+2b
2ab+2a+2b+2=a²+2ab+2a+b²+2b
a²+b²=2ab+2a+2b+2-(2ab+2a+2b)
a²+b²=2ab+2a+2b+2-2ab-2a-2b
снова группируем
a²+b²=(2ab-2ab)+(2a-2a)+(2b-2b)+2
a²+b²=2
840
Объяснение:
Первую марку мы можем выбрать абсолютно любую из 7, то есть 1 из 7 — соответственно выбора первой марки.
После выбора первой марки, их остаётся уже на 1 меньше, то есть 7-1=6. Следовательно, вторую марку мы можем выбрать 1 из выбора.
После этого остаётся 6-1= 5 марок. и Третью марку мы выбираем одну из 5.
Теперь остаётся 5-1=4 марки. и последнюю, четвёртую марку можем выбрать одну из 4.
Вспомним, следующее правило из комбинаторики:
Вспомним, следующее правило из комбинаторики:Вспомним, следующее правило из комбинаторики:Правило умножения (правило «и») — если элемент A можно выбрать и при любом выборе A элемент B можно выбрать то пару (A, B) можно выбрать
Согласно приведенному выше правилу,
количество выбрать 4 марки из 7 =
= 7 * 6 * 5 * 4 = 42*20=840
80
это 100 % ,п4 это 5% итого &
800это 1000% а 40 это будут 50% ,то нсьб 950/% приходит не заряженных