1) на формулы сокращенного умножения 2) на формулы сокращенного умножения и вынесение общего множителя 3) на формулы сокращенного умножения 4) решение квадратных уравнений и вынесение общего множжителя 5) Чтобы доказать делимость, разделим данное выражение на 8. Раскроем скобки, вынесем общий множитель и получим квадратное выражение.
Натуральные числа - это числа больше нуля, следовательно и полученное нами квадратное выражение должно быть больше нуля. Получаем квадратное неравенство, которое и решаем.
Т.к. при коэффициент положительный, ветви параболы смотрят вверх, следовательно больше нуля заштрихованная область.
Нам же нужны значения n>0, а они входят в ответ. Значит данное в условии выражение делится на 8 при любом натуральном n. Что и требовалось доказать.
А) хотя бы в одном справочнике: исключаем вероятность одновременного отсутствия формул в обоих справочниках: 1-0,8=0,2 - вероятность отсутствия формулы в первом справочнике 1-0,7=0,3 - вероятность отсутствия формулы во втором справочнике 0,2*0,3=0,06 - вероятность отсутствия формулы в обоих справочниках одновременно 1-0,06 = 0,94 - вероятность нахождения формулы хотя бы в одном справочнике Б) только в одном справочнике. Исключим одновременное нахождение и одновременное отсутствие формул в двух справочниках: 0,8*0,7=0,56 - вероятность нахождения формулы в обоих справочниках 0,2*0,3=0,06 - вероятность отсутствия формулы в обоих справочниках одновременно 1-0,56-0,06=1-0,62=0,38 - вероятность нахождения формулы только в одном справочнике.