Для вычисления корней данного кубического уравнения используются формулы Кардано.
Исходное уравнение приводится к виду: y^3+py+q=0.
Здесь применяются следующие формулы:
p=-b^2/(3a^2 )+c/a, q=(2b^3)/(27a^3 )-bc/(3a^2 )+d/a.
где
a - коэффициент при x^3,
b - коэффициент при x^2,
c - коэффициент при x,
d - свободный член.
Подставим наши значения в данные формулы, мы получим:
p = -3, q = 7.
Потом использовав формулу: Q = (p/3)³ + (q/2)², вычислим количество корней кубического уравнения. Если:
Q > 0 — один вещественный корень и два сопряженных комплексных корня;
Q < 0 — три вещественных корня;
Q = 0 — один однократный вещественный корень и один двукратный, или, если p = q = 0, то один трехкратный вещественный корень.
В нашем случае Q = 11,25, будем иметь один вещественный корень и два сопряженных комплексных корня.
А сами корни найдём по следующим формулам:
x1 = α + β − (b/3a);
x2,3 = −((α+β)/2) − (b/3a) ± i((α−β)/2)√3;
где α = (−(q/2) + √Q)^(1/3), β = (−(q/2) − √Q)^(1/3).
Подставив наши значения в выше указанные формулы вычислим что:
α = −0,5264, β = −1,8995
x1 = −4,42599; это вещественный корень.
x2,3 =−0,787 ± i·1.1891.
Объяснение:
Есть такое правило:
чтобы определить, на какую цифру оканчивается число, нужно:
1)посмотреть на само число и найти последнюю цифру этого числа
2)производить операции будем с этой цифрой, в данном случае, с 3.
3)поделить степень этого числа на 4.
Далее самое интересное:
1)если у тебя степень делится на 4 без остатка, то это число будет оканчиваться на цифру числа в 4 степени.
2)если у тебя степень делится с остатком, то надо смотреть на остаток.Если остаток 3, то число будет оканчиваться на эту же цифру, только в 3 степени этого же числа.Если на 2, то число будет оканчиваться на ту же цифру, как и это число во второй степени.
x·x² =
x³, x>0
По формуле![\displaystyle x^a \cdot x^b =x^{a+b},\; x0](/tpl/images/0519/1609/fb352.png)
ответ: "икс в кубе".