Пример:Какое число из промежутка (2;3) не входит в область определения функции y=tg(пиХ)? 1.область определения = ОДЗ(область допустимых значений) = D(y) - значения аргумента Х, при которых функция существует, то есть такие Х, при которых можно сосчитать У, 2.tg(ПХ)=sin(ПХ)/cos(ПХ), тангенс пиХ нельзя сосчитать когда косинус пиХ равен нулю, так как на нолю делить нельзя. cos(пиХ)=0 , пиХ=пи/2 +пиN, N принадлежит Z( множество целых чисел), 3.теперь выделим Х: разделим всё уравнение на пи Х=0.5+N, N принадлежит Z 4.теперь осталось подставлять числа и находить Х из промежутка (2;3): N=2, x=2,5, 2,5 входит в данный промежуток N=1, Х=1,5 , 1,5 не входит N=3, Х=3,5, 3,5 не входит 5. таким образом Х=2,5 не входит в область определения данной функции 6. проверка(если сомневаешься): tg(2,5пи)=sin(2,5пи)/cos(2,5пи)=sin(2пи+0,5пи)/cos(2пи+0,5пи) , 2пи-полный оборот, его можно убрать sin(0,5пи)/cos(0,5пи)=sin(90)/cos(90)=1/0, на ноль делить нельзя, => 2,5 не входит в область определения => мы решили правильно
Подставим из 1 уравнение у=х-1 во второе {у=х-1 {х²-2(х-1)=26 Решим 2 уравнение, для этого раскроем скобки, умножая число перед скобками на каждое число, стоящее в скобках: х²-2х+2=26 Перенесем числа влево и приведем подобные слагаемые, чтобы в правой части остался ноль. х²-2х-24=0 Решим квадратное уравнение: D=b²-4ac, где a число перед x², a=1; b число перед x, b=-2; c свободное число, в нашем случае с=-24 D=4-4*1*(-24)= 4+96=100 x1= (-b+√D)/2a= (2+10)/2=6 x2=(-b-√D)/2a= (2-10)/2=-4 Найдем y1 и y2 подставив в первое уравнение получившиеся x1 и x2: y1=x1-1=6-1=5 y2=x2-1=-4-1=-5 ответ: (6;5) ; (-4;-5)
4.pˇ2 -64 = (2p)ˇ2 - 8ˇ2 = (2p+8)(2p-8) = 4.(p+4)(p-4) ili
4.pˇ2 - 64= 4.(pˇ2-16)=4.(p+4)(p-4)