1)x²-9x+14=0 х²-2·4,5х+4,5²-4,5²+14=0 (х-4,5)²-6,25=0 (х-4,5)²-2,5²=0 Разложим на множители по формуле разности квадратов: a²-b²=(a-b)(a+b) (x-4,5-2,5)(x-4,5+2,5)=0 (x-7)(x-2)=0 x-7=0 или х-2=0 х=7 или х=2
2)4x²-20x+21=0 (2х)²-2·2х·5+25-25+21=0 (2х-5)²-4=0 (2х-5)²-2²=0 (2х-5-2)(2х-5+2)=0 (2х-7)(2х-3)=0 2х-7=0 или 2х-3=0 х=3,5 или х=1.5 3)x²-11x+30=0 х²-2·5,5+5,5²-5,5²+30=0 (х-5,5)²-0,25=0 (х-5,5)²-0,5²=0 (х-5,5-0,5)(х-5,5+0,5)=0 (х-6)(х-5)=0 х-6=0 или х-5=0 х=6 или х=5 4)9x²-12x-5=0 (3х)²-2·3х·2+2²-2²-5=0 (3х-2)²-9=0 (3х-2)²-3²=0 (3х-2-3)(3х-2+3)=0 (3х-5)(3х+1)=0 3х-5=0 или 3х+1=0 х=5/3 или х=-1/3
cos²3x +2cos3x*sin3x+sin²3x =1+cos2x ;
1 +sin6x =1+cos2x ;
cos(π/2 -6x) - cos2x =0 ;
cos(6x-π/2) - cos2x =0 ;
-2sin(2x -π/4)*sin(4x -π/4) =0 ;
[sin(2x -π/4) =0 ; sin(4x -π/4) =0 .⇒[ 2x -π/4 =πk ;4x -π/4=πk,k∈Z.
⇔[x =(π/8)(1 +4k) ; x =(π/16)(1+4k) , k∈Z.
sin²3x+sin²(81π - x)=1,5-sin²2x ;
* * *sin(81π-x)=sin(40*2π+π-x) =sin(π-x)=sinx * * *
sin²3x+sin²x +sin²2x=1,5 ;
(1-cos6x)/2+(1-cos2x)/2+(1-cos4x)/2=3/2 ;
cos6x+cos2x+cos4x=0 ;
2cos4x*cos2x+cos4x=0 ;
2cos4x(cos2x+1/2)=0 ⇔[ cos4x =0 ; cos2x = -1/2 .
[4x =π/2 +πk ,2x =± (π - π/3) +2πk , k∈Z.
[x =π/8 +(π/4)*k ,x =± π/3 +πk , k∈Z.