Непустое подмножество линейного пространства называется линейным подпространством, если линейные операции, то есть сложение векторов и умножение их на число, не выводят за пределы этого множества. Аксиомы линейного пространства для этого множества проверять не обязательно - они будут выполнены автоматически.
1) Умножив такой вектор на отрицательное число, получим вектор, конец которого лежит во второй четверти. Поэтому ответ в первом случае отрицательный.
2) Складывая векторы, у которых координаты с четными номерами равны 0, а также умножая такие векторы на любое число, снова получаем вектор из этого множества. Поскольку оно непусто, оно является линейным подпространством.
3) Складывая векторы, у которых координаты с четными номерами равны между собой, а также умножая такие векторы на любое число, снова получаем вектор из этого множества. Поскольку оно непусто, оно является линейным подпространством.
f'(x)= 4/2√(x-1) +3 = 2/√(x-1) +3
2/√(x-1) +3 = 5
2/√(x-1) = 5-3
2/√(x-1) = 2
2 = 2* √(x-1)
1=√(x-1)
x-1=1
x=2