М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lsodh
lsodh
28.08.2022 22:33 •  Алгебра

Решить вот это. найдите периметр прямоугольника, длинна которого на 4 см больше ширины, а площадь равна 60 см2 решать нужно обязательно с дано, решение, найти, решается по формуле квадратного уравнения и с дискриминантом

👇
Ответ:
molotok1515
molotok1515
28.08.2022
Дано:
а= х+4 ( а - длина)
b= x ( b - ширина)
S=60 см^{2}

Решение:
 Формула для нахождения площади данного прямоугольника: S=a*b,
 тогда 60=х*(х+4)
60=x^{2}+4x
x^{2}+4x-60=0
\frac{D}{4} =4+60=64
x=-2(+-)8
x=6
Ширина равна 6 см, длина - 6+4=10 (см)
Периметр P=(10+6)*2=32 (см)
ответ: 32
4,8(45 оценок)
Открыть все ответы
Ответ:
helissieble
helissieble
28.08.2022
Значение производной  в точке касания равно угловому коэффициенту касательной,  в данном случай двум.  Значит  абсцисса точки касания находится из уравнения:   yд=2

yд=(x^{3} +5 x^{2} +9x+3)д = 3x^{2}+10x+9 \\ 

3x^{2}+10x+9 =2 \\ 
3x^{2}+10x+7 = 0 \\ 
D=100 - 4*3*7 = 100 - 84 = 16 \\ 
 x_{1} = -1; x_{2} = -2 \frac{1}{3} \\ 


Т.о.  имеются две точки,   в которых касательная к графику нашей функции имеет  угловой коэффициент,  равный 2.  Вычислим значения  функции в этих точках и проверим, удовлетворяют ли они уравнению касательной:

при х = -1    y = (-1)^{3} + 5*(-1)^{2} +9*(-1)+3 = -1+5-9+3 = -2
при x = -2 \frac{1}{3}     y = (-2 \frac{1}{3})^{3} + 5*(-2 \frac{1}{3})^{2} +9*(-2 \frac{1}{3}) +3= -3 \frac{13}{27} \\

Проверим удовлетворяет ли уравнению касательной у=2х точка (-1;-2):
           -2 = 2*(-1)
           -2 = -2   ( ДА)
  
Проверим удовлетворяет ли уравнению касательной у=2х точка (-2 \frac{1}{3} ; -3 \frac{13}{27}):
            -3 \frac{13}{27} = 2*(-2 \frac{1}{3}) \\ 
-3 \frac{13}{27} = -4 \frac{2}{3}  (НЕТ)

ответ:   абсцисса  точки касания равна  -1. 

  
4,4(65 оценок)
Ответ:
новичок586
новичок586
28.08.2022
Добрый день! Давайте посмотрим, как решить эту задачу.

У нас есть усеченная пирамида, у которой основаниями являются прямоугольные треугольники с гипотенузами 4 см и 8 см, и острыми углами 60 градусов. Нам нужно найти объем этой пирамиды, зная её высоту, которая равна 8√͞͞͞͞͞3.

Для начала, нам нужно найти площадь каждого из оснований пирамиды. Рассмотрим первое основание, оно является прямоугольным треугольником.

Мы знаем, что у нас гипотенуза треугольника равна 4 см, а острый угол 60 градусов. Для решения этой задачи нам понадобится найти длины катетов. Для этого воспользуемся тригонометрией.

Первый катет (a) равен половине гипотенузы, так как у нас треугольник равнобедренный прямоугольный. Воспользуемся формулой a = c/2, где c - гипотенуза. В данном случае a = 4/2 = 2 см.

Для нахождения второго катета (b) воспользуемся теоремой Пифагора: a^2 + b^2 = c^2. Подставим известные значения: 2^2 + b^2 = 4^2. Получим 4 + b^2 = 16, откуда b^2 = 12 и b = √12 = 2√3 см.

Таким образом, площадь первого основания будет равна S1 = (1/2) * a * b = (1/2) * 2 см * 2√3 см = 2√3 см^2.

Аналогичным образом мы можем найти площадь второго основания, у которого гипотенуза равна 8 см. Первый катет (a) будет равен 8/2 = 4 см, а второй катет (b) будет равен √(8^2 - 4^2) = √(64 - 16) = √48 = 4√3 см. Таким образом, площадь второго основания будет равна S2 = (1/2) * 4 см * 4√3 см = 8√3 см^2.

Теперь мы знаем площади оснований пирамиды. Чтобы найти объем усеченной пирамиды, мы можем использовать формулу объема пирамиды: V = (1/3) * S1 * S2 * h, где S1 и S2 - площади оснований, а h - высота пирамиды.

Подставим полученные значения: V = (1/3) * 2√3 см^2 * 8√3 см^2 * 8√͞͞͞͞͞3 см.

Давайте разберемся, как упростить это выражение. Раскроем скобки и умножим числа: V = (1/3) * 2 * 8 * √3 * √3 * √͞͞͞͞͞3 см^3. Упростим умножение чисел: V = (1/3) * 16 * 3 * √͞͞͞͞͞3 * √͞͞͞͞͞3 * √͞͞͞͞͞3 см^3.

Мы знаем, что √͞͞͞͞͞3 * √͞͞͞͞͞3 * √͞͞͞͞͞3 = √3 * √3 * √3 = 3, поэтому V = (1/3) * 16 * 3 * 3 см^3.

Нам осталось только умножить числа в выражении: V = (1/3) * 16 * 3 * 3 = (1/3) * 144 = 48 см^3.

Таким образом, объем усеченной пирамиды равен 48 см^3.

Вот и все! Если у тебя появятся еще вопросы, не стесняйся задавать!
4,7(40 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ