Графіком квадратичної функції є парабола, що має вершину у початку координат і проходить через точку А(2;-8). Задайте цю функцію формулою.
Графиком квадратичной функции является парабола, что вершину в начале координат и проходит через точку А (2; -8). Задайте эту функцию формулой
Решение: Уравнение параболы задается уравнением y =ax²+bx+с или х = ay²+by+с(данное уравнение можете не рассматривать) где а≠0 Так как вершина параболы находится в начале координат то b=c=0 Уравнение параболы можно записать как: y =ax² или х = ay²(данное уравнение можете не рассматривать) Найдем постоянную величину а из уравнений подставив координаты точки А(2;-8) а = у/х² = -8/2² =-8/4=-2 y = -2x² a = x/y² =2/(-8)² =2/64 =1/32 x = y²/32 (данное уравнение можете не рассматривать) Рішення : Рівняння параболи задається рівнянням y = ax ² + bx + з або х = ay ² + by + з де а ≠ 0 Так як вершина параболи знаходиться на початку координат то b = c = 0 рівняння можна записати як y = ax ² або х = ay ² Знайдемо постійну величину а з рівнянь підставивши координати точки А (2; -8) а = у / х ² = -8 / 2 ² = -8/4 = -2 y =-2x ² a = x / y ² = 2 / (-8) ² = 2/64 = 1/32 x = y ² / 32
Имеем систему:
b1 + b1q + b1q2 = 13
b1∙ b1q∙ b1q2 = 27.
b13 ∙q3 = 27 или b1q = 3, отсюда b1 = 3/q
Вынесем в первом уравнении b1 за скобки
b1(1 + q+ q2) = 13
3/q(1 + q+ q2) = 13 раскроем скобки
3/q + 3 + 3q =13. Приведем к общему знаменателю
3 +3q + 3q2 = 13q. Получим квадратное уравнение
3q2 – 10q + 3 = 0
D1 = 16, q1 = 3, q2 = 1/3
Т. к. прогрессия возрастающая, то q = 3
тогда b1 = 3:3 = 1, b2 = 1*3 = 3, b3= 3*3 = 9, b4 = 27, b5= 81
Cсложим их, получим: 1 + 3 + 9 + 27 + 81 = 121