Примем работу за 1. х часов надо первому, у часов надо второму. первый за час сделает 1/х часть работы, второй 1/у. Вместе за 6 часов они сделают (1/х + 1/у)*6 или всю работу; уравнение (1/х + 1/у)*6=1 за 6 часов первый сделает 6/х часть работы, второй за 4 часа 4/у часть работы, вместе 6/х + 4/у или 0,8 работы (80%); уравнение 6/х + 4/у=0,8. объединим в систему: 6/х + 6/у =1 6/х +4/у=0,8 вычтем второе уравнение из первого 2/у=0,2 у=10 (часов) подставим в первое уравнение и найдем х 6/х + 6/10=1 6/х=4/10 х=15 (часов) ответ: первому надо 15 ч, второму - 10 ч.
Примем работу за 1. х часов надо первому, у часов надо второму. первый за час сделает 1/х часть работы, второй 1/у. Вместе за 6 часов они сделают (1/х + 1/у)*6 или всю работу; уравнение (1/х + 1/у)*6=1 за 6 часов первый сделает 6/х часть работы, второй за 4 часа 4/у часть работы, вместе 6/х + 4/у или 0,8 работы (80%); уравнение 6/х + 4/у=0,8. объединим в систему: 6/х + 6/у =1 6/х +4/у=0,8 вычтем второе уравнение из первого 2/у=0,2 у=10 (часов) подставим в первое уравнение и найдем х 6/х + 6/10=1 6/х=4/10 х=15 (часов) ответ: первому надо 15 ч, второму - 10 ч.
5sin^2 x + 3sin x*cos x - cos^2 x=3
5sin^2 x + 3sin x*cos x - cos^2 x-3sin^2x-3cos^2x=0
2sin^2x+3sinxcosx-4cos^2x=0 делим все на cos^2x
2tg^2x+3tgx-4=0
tgx=t
2t^2+3t-4=0
D=9+32=41
t=(-3+корень из 41)/4
возможно ты неправильно списала, так как решение правильное