М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LOLZIG
LOLZIG
05.03.2023 04:56 •  Алгебра

Найдите значения выражения 4х^2+9у^2, если 2х+3у=18, ху=6

👇
Ответ:
elbrosso
elbrosso
05.03.2023
(2х)^2+12ху+(3у^2)-12ху=(2х+3у)^2-12ху.
18^2-12·6= 324-72=252.

12ху ввели дополнительно, чтобы получился квадрат, 12ху прибавили и отняли чтобы не изменилось начальное выражение.
4,8(45 оценок)
Открыть все ответы
Ответ:
Kik1924
Kik1924
05.03.2023

 Так как нужно найти нули, то есть корни, мы приравняем x^3+4x^2+x-6 к 0

нужно найти все целые делители свободного члена, то есть числа -6

+-1,+-2,+-3,+-6; 

заметим, что при постановке вместо х числа 1, равенство получается верным (0=0)

значит число 1 является одним из корней уравнения! 

Но как же найти остальные 2? 

Если число 1является корнем, то его можно записать так : (х-1)

для того чтобы найти оставшиеся два корня нужно разделить (x^3+4x^2+x-6) на (х-1)

думаю деления подобного родна проходили в школе:)

при делении получается : х^2+5х+6; по теореме виета найдем сразу корни : х=-3;-2

ответ: -3;-2;1

4,7(15 оценок)
Ответ:
Rodionok2341
Rodionok2341
05.03.2023

Покажем, что (cos x)'=-sin x

 

По определению y'=lim_{\Delta x-0} \frac {\Delta y}{\Delta x}

 

Приращение функции равно

\Delta y=cos (x+\Delta x)-cos x=-2sin(x+\frac{\Delta x}{2})sin (\frac {\Delta x}{2})

Ищем отношение

\frac {\Delta y}{\Delta x}=-sin(x+\frac{\Delta x}{2})\frac {sin (\frac {\Delta x}{2})}{\Delta \frac{x}{2}}

Перейдем в этом равенстве к границе, когда  \Delta x-0. В следствии непрерывности функции sin x

lim_{\Delta x-0} -sin(x+\frac{\Delta x}{2})=- -sin lim_{\Delta x-0}(x+\frac{\Delta x}{2})=-sin x

 

Для второго множителя (используя один из замечательных пределов), обозначив \Delta \frac {x}{2} =\Delta \alpha, имеем

lim_{\Delta x-0} \frac {sin (\frac {\Delta x}{2})}{\Delta \frac{x}{2}}= lim_{\alpha-0} \frac {sin \alpha}{\alpha}=1

Поєтому

lim_{\Delta x-0} \frac {\Delta y}{\Delta x}=lim_{\Delta x-0} (-sin(x+\frac{\Delta x}{2})\frac {sin (\frac {\Delta x}{2})}{\Delta \frac{x}{2}})=-sin x *1=-sin x

Т.е. (сos x)'=-sinx

 

Производная тангенса. Возьмем любую точку х є (a;b), где (a;b) - один из интервалов, на котором определена функция tg x. Ищем приращение

\Delta y=\frac {sin (x+\Delta x)}{cos(x+\Delta x)}-\frac {sin x}{cos x}= =\frac{sin(x+\Delta x)cos x-sinx cos(x+\Delta x)}{cos(x+\Delta x)cos x}= \frac{sin \Delta x}{cos(x+\Delta x)cos x}

Получаем отношение

\frac {\Delta y}{\Delta x}=\frac{\frac {sin \Delta x}{\Delta x}}{cos(x+\Delta x)cos x}

переходим к границе, когда \Delta x-0.

lim_{\Delta x-0}\frac {\Delta y}{\Delta x}=lim_{\Delta x-0}\frac{\frac {sin \Delta x}{\Delta x}}{cos(x+\Delta x)cos x}=\frac {1}{cos^2 x}

Следовательно производная функции y=tg x существует и равна

(tg x)'=\frac {1}{cos^2 x}

4,4(67 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ