М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
GHTU
GHTU
23.06.2021 16:00 •  Алгебра

Дроби a/a^2-9b^2 и 2b/a-3b к наименьшему общему знаменателю.

👇
Ответ:
anx2003
anx2003
23.06.2021
Наименьший общий знаменатель (а-3в)(а+3в), смотри фотографию
Дроби a/a^2-9b^2 и 2b/a-3b к наименьшему общему знаменателю.
4,4(40 оценок)
Открыть все ответы
Ответ:
mirza22
mirza22
23.06.2021
Применим метод Лагранжа. Т.е. найдем общее решение соответствующего однородного уравнения

                                            xy'-3y=0                 (*)

Уравнение (*) является дифференциальным уравнением с разделяющими переменными.

            \dfrac{dy}{y} =3 \dfrac{dx}{x} ;~~~~~~~~\displaystyle~~~~~~\int \dfrac{dy}{y} =3 \int\dfrac{dx}{x} ;~~~~~~~\Rightarrow~~~~~~ y=Cx^3

Примем константу за функцию, т.е. y=C(x)\cdot x^3. Тогда, дифференцируя по правилу произведения.
         y'=C'(x)\cdot x^3+3x^2C(x)

Подставим теперь все это в исходное уравнение

                     x\cdot(C'(x)\cdot x^3+3x^2C(x))-3C(x)\cdot x^3=x^4e^x\\ \\ x^4C'(x)+3x^3C(x)-3x^3C(x)=x^4e^x\\ \\ ~~~~~~~C'(x)=e^x;~~~~~\Rightarrow~~~~ ~~ C(x)=e^x+C

Получаем общее решение данного ДУ :  \boxed{y=(e^x+C)x^3}

                    e=(e^0+C)\cdot0^3;~~~~~~~\Rightarrow~~~~~~~ e\ne0

В поиске частного решения произошла ошибка в условии. Если нет никакой ошибки, что ж уж поделать!
4,4(77 оценок)
Ответ:
Nikita43242
Nikita43242
23.06.2021
1) (16x^2 - 64x) - (9y^2 + 54y) - 161 = 0
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3

2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))

3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
\int { \frac{dy}{y} }=ln|y|
\int { \frac{2xdx}{1+x^2} }=|1+x^2=t;dt=2xdx|=\int \frac{dt}{t} =ln|t|+C=ln|1+x^2|+lnC
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)
4,4(9 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ