Пусть х кг-масса первого сплава, а у кг - масса второго сплава.
Тогда 0,05х кг - масса никеля в первом сплаве,
а 0,35 кг - масса никеля во втором сплаве.
Масса третьего сплава х+у=150 кг и масса никеля в нём 0,3(х+у) кг .
Составляем уравнение:
0,05х+0,35у=0,3(х+у)
0,05х+0,35у=0,3х+0,3у
0,05у=0,25х
5у=25х
у=5х
Это значение мы подставляем в уравнение х+у=150 и находим массы сплавов:
х+5х=150
6х=150
х=25(кг)-масса первого сплава
5х=5*25=125(кг)-масса второго сплава
Найдём на сколько килограммов масса первого сплава меньше массы второго:
125-25=100(кг)
ответ: на 100 кг
существует два перевода из периодической дроби в обыкновенную:
1) надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода и записать эту разность в числитель, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать
столько нулей, скока цифр между запятой и первым периодом: 0,11(6)
116-11 105 7
0,11(6)===
900 900 60
235-2 233
0.2(35)= =
990 990
2)
а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k.
б)Найдем значение выражения X · 10k
в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь.
г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные.
0,11(6)=Х
k=1
10^(k)=1
тогда x*10=10*0,116666...=1,166666...
10X-X=1,166666...-0,116666...=1,16-0,11=1,05
9X=1,05
105 7
X==
900 60
0.2(35):
k=2
10^k=100
100X=0.2353535...*100=23,535353
100X-X=23,535353-0.2353535=23,3
99x=23,3
233
x=
900
найдём точки пересечения графиков
-x²+4=x
решим квадратное уравнение
x²+x−4=0
D=b2−4ac=12−4·1·(−4)=1+16=17
x₁=(-1 - √17)/2=-(√17+1)/2
x₂=(-1 + √17)/2=(√17-1)/2
интегралы в промежутке от x₁= -(√17+1)/2 до x₂=(√17-1)/2
S1=∫(-x^2-x+4)dx =4x-x³/3=4x₂-x₂³/3-4x₁-x₁³/3
S2=∫xdx=x²/2=x₂²/2-x₁²/2
разность интегралов
в промежутке от -(√17+1)/2 до (√17-1)/2
это площадь S фигуры,ограниченной указанными линиями
S=S1-S2=4x₂-x₂³/3-4x₁-x₁³/3-x₂²/2+x₁²/2=
=4x₂-x₂³/3-x₂²/2-4x₁-x₁³/3+x₁²/2=
=4(√17-1)/2-((√17-1)/2)³/3-((√17-1)/2)²/2-4(-(√17+1)/2)-(-(√17+1)/2)³/3+(-(√17+1)/2)²/2=(17√17)/6
ответ:(17√17)/6
2)
y=6x, y=12x-3x²2
найдём точки пересечения графиков
12x-3x^2=6x
решим квадратное уравнение
3x²2+6x-12x=0
3x²2-6x=0
3x(x-2)=0
x1=2
x2=0
площадь S фигуры,ограниченной указанными линиями
в промежутке от 0 до 2 будет разность интегралов
S=∫(12x-3x²)dx-∫6xdx=∫(12x-3x²-6x)dx=∫(6x-3x²)=
=-x³+3x²=-2³+3*2²=12-8=4
ответ:4