Нужно вспомнить теорему Виета. Согласно теореме Виета: х1+х2=а х1*х2=свободный член, где х1 и х2 - корни уравнения квадратичного х1^2+x2^2= а2-2(а+7) По условию эта сумма квадратов равна 10, откуда получаем квадратичное уравнение а2-2а-14=10, корнями которого являются числа 6 и -4. Нашли так. Вернемся к теореме Виета: х1+х2=2 х1*х2=-24.. Вышло два корня:6, -4. При решении квадратичного уравнения нужно помнить, что дискриминант должен быть положительным либо равным 0. а2-4(а+7) больше либо равно 0. При а = 6 дискриминант исходного уравнения отрицательный: х2-6х+13=0 D=36-52=-16, т.е. при а=6 - дискриминант отрицательный и корней уравнение не имеет При а=-4: х2+4х+3=0 D=16=4*3=4-положительный, т.е.при а = -4 положительный. Т.Е. делаем вывод, что нам подходит а=-4
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4 y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7 (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7 8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3